Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transfusion ; 61(10): 2885-2897, 2021 10.
Article in English | MEDLINE | ID: mdl-34289101

ABSTRACT

BACKGROUND: Large volume delayed sampling (LVDS) and pathogen reduction technology (PRT) are strategies for platelet processing to minimize transfusion of contaminated platelet components (PCs). This study holistically compares the economic and clinical impact of LVDS and PRT in the United States. STUDY DESIGN AND METHODS: A decision model was constructed to simulate collection, processing, and use of PCs and to compare processing strategies: PRT with 5-day shelf life, LVDS with 7-day shelf life (LVDS7), and LVDS with 5-day shelf life extended to 7 days with secondary testing (LVDS5/2). Target population was adults requiring two or more transfusions. Collection, processing, storage, and distribution data were obtained from the National Blood Collection and Utilization Survey and published literature. Patient outcomes associated with transfusions were obtained from AABB guidelines, meta-analyses, and other published clinical studies. Costs were obtained from reimbursement schedules and other published sources. RESULTS: Given 10,000 donated units, 9512, 9511, and 9651 units of PRT, LVDS5/2, and LVDS7 PCs were available for transfusion, respectively. With these units, 1502, 2172, and 2329 transfusions can be performed with similar levels of adverse events. Assuming 30 transfusions a day, a hospital would require 69,325, 47,940, and 45,383 units of PRT, LVDS5/2, and LVDS7 platelets to perform these transfusions. The mean costs to perform transfusions were significantly higher with PRT units. CONCLUSIONS: Compared with PRT, LVDS strategies were associated with lower costs and higher PC availability while patients experienced similar levels of adverse events. Increased utilization of LVDS has the potential to improve efficiency, expand patient access to platelets, and reduce health care costs.


Subject(s)
Blood Platelets , Blood Safety/methods , Blood Platelets/microbiology , Blood Platelets/parasitology , Blood Platelets/virology , Blood Safety/economics , Humans , Platelet Count , Platelet Transfusion/economics , Platelet Transfusion/methods , Sterilization/economics , Sterilization/methods , United States
2.
FEMS Microbiol Ecol ; 40(1): 55-63, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-19709211

ABSTRACT

Terminal restriction fragment length polymorphism (TRF or T-RFLP) analysis and 16S rDNA sequence analysis from clone libraries were used to examine cyanobacterial diversity in three types of predominant soil crusts in an arid grassland. Total DNA was extracted from cyanobacteria-, lichen-, or moss-dominated crusts that represent different successional stages in crust development, and which contribute different amounts of carbon and nitrogen into the ecosystem. Cyanobacterial 16S rRNA genes were amplified by PCR using cyanobacteria-specific 16S rDNA primers. Both TRF and clone sequence analyses indicated that the cyanobacterial crust type is dominated by strains of Microcoleus vaginatus, but also contains other cyanobacterial genera. In the moss crust, M. vaginatus-related sequences were also the most abundant types, together with sequences from moss chloroplasts. In contrast, sequences obtained from the lichen crust were surprisingly diverse, representing numerous genera, but including only two from M. vaginatus relatives. By obtaining clone sequence information, we were able to infer the composition of many peaks observed in TRF profiles, and all peaks predicted for clone sequences were observed in TRF analysis. This study provides the first TRF analysis of biological soil crusts and the first DNA-based comparison of cyanobacterial diversity between lichen-, cyano- and moss-dominated crusts. Results indicate that for this phylogenetic group, TRF analysis, in conjunction with limited sequence analysis, can provide accurate information about the composition and relative abundance of cyanobacterial types in soil crust communities.

SELECTION OF CITATIONS
SEARCH DETAIL