Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
2.
Biosensors (Basel) ; 14(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39194591

ABSTRACT

Orthoflaviviruses cause a major threat to global public health, and no antiviral treatment is available yet. Zika virus (ZIKV) entry, together with many other viruses, is known to be enhanced by phosphatidylserine (PS) receptors such as T-cell immunoglobulin mucin domain protein 1 (TIM-1). In this study, we demonstrate for the first time, using cell-based electrical impedance (CEI) biosensing, that ZIKV entry is also enhanced by expression of CD300a, another PS receptor. Furthermore, inhibiting CD300a in immature monocyte-derived dendritic cells partially but significantly inhibits ZIKV replication. As we have previously demonstrated that CEI is a useful tool to study Orthoflavivirus infection in real time, we now use this technology to determine how these PS receptors influence the kinetics of in vitro ZIKV infection. Results show that ZIKV entry is highly sensitive to minor changes in TIM-1 expression, both after overexpression of TIM-1 in infection-resistant HEK293T cells, as well as after partial knockout of TIM-1 in susceptible A549 cells. These results are confirmed by quantification of viral copy number and viral infectivity, demonstrating that CEI is highly suited to study and compare virus-host interactions. Overall, the results presented here demonstrate the potential of targeting this universal viral entry pathway.


Subject(s)
Electric Impedance , Hepatitis A Virus Cellular Receptor 1 , Virus Internalization , Zika Virus Infection , Zika Virus , Humans , Hepatitis A Virus Cellular Receptor 1/metabolism , Zika Virus Infection/virology , Zika Virus Infection/metabolism , HEK293 Cells , A549 Cells , Receptors, Immunologic/metabolism , Virus Replication , Biosensing Techniques , Sialic Acid Binding Ig-like Lectin 1
3.
Biochem Pharmacol ; 227: 116445, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053638

ABSTRACT

The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/ß-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.


Subject(s)
Epithelial-Mesenchymal Transition , Hepatocytes , Tankyrases , Humans , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/physiology , Poly ADP Ribosylation/drug effects , Enzyme Inhibitors/pharmacology , Phenanthrenes/pharmacology
4.
Front Immunol ; 15: 1416476, 2024.
Article in English | MEDLINE | ID: mdl-38962007

ABSTRACT

Human T-Lymphotropic Virus type-1 (HTLV-1) is a unique retrovirus associated with both leukemogenesis and a specific neuroinflammatory condition known as HTLV-1-Associated Myelopathy (HAM). Currently, most proposed HAM biomarkers require invasive CSF sampling, which is not suitable for large cohorts or repeated prospective screening. To identify non-invasive biomarkers for incident HAM in a large Brazilian cohort of PLwHTLV-1 (n=615 with 6,673 person-years of clinical follow-up), we selected all plasma samples available at the time of entry in the cohort (between 1997-2019), in which up to 43 cytokines/chemokines and immune mediators were measured. Thus, we selected 110 People Living with HTLV-1 (PLwHTLV-1), of which 68 were neurologically asymptomatic (AS) at baseline and 42 HAM patients. Nine incident HAM cases were identified among 68 AS during follow-up. Using multivariate logistic regression, we found that lower IL-10, IL-4 and female sex were independent predictors of clinical progression to definite HAM (AUROC 0.91), and outperformed previously suggested biomarkers age, sex and proviral load (AUROC 0.77). Moreover, baseline IL-10 significantly predicted proviral load dynamics at follow-up in all PLwHTLV-1. In an exploratory analysis, we identified additional plasma biomarkers which were able to discriminate iHAM from either AS (IL6Rα, IL-27) or HAM (IL-29/IFN-λ1, Osteopontin, and TNFR2). In conclusion, female sex and low anti-inflammatory IL-10 and IL-4 are independent risk factors for incident HAM in PLwHTLV-1,while proviral load is not, in agreement with IL-10 being upstream of proviral load dynamics. Additional candidate biomarkers IL-29/IL-6R/TNFR2 represent plausible therapeutic targets for future clinical trials in HAM patients.


Subject(s)
Biomarkers , Human T-lymphotropic virus 1 , Interleukin-10 , Viral Load , Humans , Female , Male , Brazil/epidemiology , Human T-lymphotropic virus 1/immunology , Interleukin-10/blood , Biomarkers/blood , Middle Aged , Adult , HTLV-I Infections/immunology , HTLV-I Infections/blood , HTLV-I Infections/diagnosis , Proviruses , Cohort Studies , Paraparesis, Tropical Spastic/blood , Paraparesis, Tropical Spastic/immunology , Paraparesis, Tropical Spastic/virology , Incidence
5.
Sci Adv ; 10(29): eadm8660, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028818

ABSTRACT

Despite the success of immunotherapy, overcoming immunoresistance in cancer remains challenging. We identified a unique niche of tumor-associated macrophages (TAMs), coexpressing T cell immunoglobulin and mucin domain-containing 3 (TIM3) and V-domain immunoglobulin suppressor of T cell activation (VISTA), that dominated human and mouse tumors resistant to most of the currently used immunotherapies. TIM3+VISTA+ TAMs were sustained by IL-4-enriching tumors with low (neo)antigenic and T cell-depleted features. TIM3+VISTA+ TAMs showed an anti-inflammatory and protumorigenic phenotype coupled with inability to sense type I interferon (IFN). This was established with cancer cells succumbing to immunogenic cell death (ICD). Dying cancer cells not only triggered autocrine type I IFNs but also exposed HMGB1/VISTA that engaged TIM3/VISTA on TAMs to suppress paracrine IFN-responses. Accordingly, TIM3/VISTA blockade synergized with paclitaxel, an ICD-inducing chemotherapy, to repolarize TIM3+VISTA+ TAMs to proinflammatory TAMs that killed cancer cells via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling. We propose targeting TIM3+VISTA+ TAMs to overcome immunoresistant tumors.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Immunotherapy , Tumor-Associated Macrophages , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Animals , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Immunotherapy/methods , Mice , Drug Resistance, Neoplasm , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Cell Line, Tumor , Tumor Microenvironment/immunology , Interferon Type I/metabolism , B7 Antigens
6.
Int J Biol Macromol ; 266(Pt 2): 131239, 2024 May.
Article in English | MEDLINE | ID: mdl-38569992

ABSTRACT

We present the design, synthesis, computational analysis, and biological assessment of several acrylonitrile derived imidazo[4,5-b]pyridines, which were evaluated for their anticancer and antioxidant properties. Our aim was to explore how the number of hydroxy groups and the nature of nitrogen substituents influence their biological activity. The prepared derivatives exhibited robust and selective antiproliferative effects against several pancreatic adenocarcinoma cells, most markedly targeting Capan-1 cells (IC50 1.2-5.3 µM), while their selectivity was probed relative to normal PBMC cells. Notably, compound 55, featuring dihydroxy and bromo substituents, emerged as a promising lead molecule. It displayed the most prominent antiproliferative activity without any adverse impact on the viability of normal cells. Furthermore, the majority of studied derivatives also exhibited significant antioxidative activity within the FRAP assay, even surpassing the reference molecule BHT. Computational analysis rationalized the results by highlighting the dominance of the electron ionization for the antioxidant features with the trend in the computed ionization energies well matching the observed activities. Still, in trihydroxy derivatives, their ability to release hydrogen atoms and form a stable O-H⋯O•⋯H-O fragment upon the H• abstraction prevails, promoting them as excellent antioxidants in DPPH• assays as well.


Subject(s)
Acrylonitrile , Antineoplastic Agents , Antioxidants , Cell Proliferation , Pancreatic Neoplasms , Pyridines , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Acrylonitrile/chemistry , Acrylonitrile/pharmacology , Acrylonitrile/analogs & derivatives , Cell Proliferation/drug effects , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Pyridines/chemistry , Pyridines/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Structure-Activity Relationship , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis
7.
Bioorg Chem ; 147: 107326, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653153

ABSTRACT

Continuing our research into the anticancer properties of acrylonitriles, we present a study involving the design, synthesis, computational analysis, and biological assessment of novel acrylonitriles derived from methoxy, hydroxy, and N-substituted benzazole. Our aim was to examine how varying the number of methoxy and hydroxy groups, as well as the N-substituents on the benzimidazole core, influences their biological activity. The newly synthesized acrylonitriles exhibited strong and selective antiproliferative effects against the Capan-1 pancreatic adenocarcinoma cell line, with IC50 values ranging from 1.2 to 5.3 µM. Consequently, these compounds were further evaluated in three other pancreatic adenocarcinoma cell lines, while their impact on normal PBMC cells was also investigated to determine selectivity. Among these compounds, the monohydroxy-substituted benzimidazole derivative 27 emerged with the most profound and broad-spectrum anticancer antiproliferative activity being emerged as a promising lead candidate. Moreover, a majority of the acrylonitriles in this series exhibited significant antioxidative activity, surpassing that of the reference molecule BHT, as demonstrated by the FRAP assay (ranging from 3200 to 5235 mmolFe2+/mmolC). Computational analysis highlighted the prevalence of electron ionization in conferring antioxidant properties, with computed ionization energies correlating well with observed activities.


Subject(s)
Acrylonitrile , Antineoplastic Agents , Antioxidants , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Pancreatic Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Humans , Acrylonitrile/chemistry , Acrylonitrile/pharmacology , Acrylonitrile/analogs & derivatives , Acrylonitrile/chemical synthesis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Structure-Activity Relationship , Molecular Structure , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Cell Line, Tumor , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis
8.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396966

ABSTRACT

Newly designed pentacyclic benzimidazole derivatives featuring amino or amido side chains were synthesized to assess their in vitro antiproliferative activity. Additionally, we investigated their direct interaction with nucleic acids, aiming to uncover potential mechanisms of biological action. These compounds were prepared using conventional organic synthesis methodologies alongside photochemical and microwave-assisted reactions. Upon synthesis, the newly derived compounds underwent in vitro testing for their antiproliferative effects on various human cancer cell lines. Notably, derivatives 6 and 9 exhibited significant antiproliferative activity within the submicromolar concentration range. The biological activity was strongly influenced by the N atom's position on the quinoline moiety and the position and nature of the side chain on the pentacyclic skeleton. Findings from fluorescence, circular dichroism spectroscopy, and thermal melting assays pointed toward a mixed binding mode-comprising intercalation and the binding of aggregated compounds along the polynucleotide backbone-of these pentacyclic benzimidazoles with DNA and RNA.


Subject(s)
Antineoplastic Agents , Humans , Structure-Activity Relationship , Cell Line, Tumor , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Cell Proliferation , Molecular Structure
9.
Molecules ; 28(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37894686

ABSTRACT

A series of novel 2,6-diphenyl substituted imidazo[4,5-b]pyridines was designed and synthesized using optimized Suzuki cross coupling to evaluate their biological activity in vitro. The conditions of the Suzuki coupling were evaluated and optimized using a model reaction. To study the influence of the substituents on the biological activity, we prepared N-unsubstituted and N-methyl substituted imidazo[4,5-b]pyridines with different substituents at the para position on the phenyl ring placed at position 6 on the heterocyclic scaffold. Antiproliferative activity was determined on diverse human cancer cell lines, and the selectivity of compounds with promising antiproliferative activity was determined on normal peripheral blood mononuclear cells (PBMC). Pronounced antiproliferative activity was observed for p-hydroxy substituted derivatives 13 and 19, both displaying strong activity against most of the tested cell lines (IC50 1.45-4.25 µM). The unsubstituted N-methyl derivative 19 proved to be the most active derivative. There was a dose-dependent accumulation of G2/M arrested cells in several cancer cell lines after exposure to compound 19, implying a cell cycle-phase-specific mechanism of action. Additionally, the novel series of derivatives was evaluated for antiviral activity against a broad panel of viruses, yet the majority of tested compounds did not show antiviral activity.


Subject(s)
Antineoplastic Agents , Leukocytes, Mononuclear , Humans , Antineoplastic Agents/pharmacology , Pyridines/pharmacology , Cell Line, Tumor , Antiviral Agents/pharmacology , Cell Proliferation , Structure-Activity Relationship , Molecular Structure , Drug Screening Assays, Antitumor
10.
J Virol ; 97(10): e0132523, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37823646

ABSTRACT

IMPORTANCE: Itaconate derivates, as well as the naturally produced metabolite, have been proposed as antivirals against influenza virus. Here, the mechanism behind the antiviral effects of exogenous 4-octyl itaconate (4-OI), a derivative of itaconate, against the influenza A virus replication is demonstrated. The data indicate that 4-OI targets the cysteine at position 528 of the CRM1 protein, resulting in inhibition of the nuclear export of viral ribonucleoprotein complexes in a similar manner as previously described for other selective inhibitors of nuclear export. These results postulate a mechanism not observed before for this immuno-metabolite derivative. This knowledge is helpful for the development of derivatives of 4-OI as potential antiviral and anti-inflammatory therapeutics.


Subject(s)
Antiviral Agents , Exportin 1 Protein , Influenza, Human , Succinates , Virus Replication , Humans , Active Transport, Cell Nucleus , Antiviral Agents/pharmacology , Nuclear Proteins/metabolism , Virus Replication/drug effects , Succinates/pharmacology , Exportin 1 Protein/metabolism
11.
Future Med Chem ; 15(14): 1251-1272, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37551679

ABSTRACT

Aim: The aim was synthesis of novel benzazoles bearing amidino and 2-hydroxyphenyl substituents to explore their biological activity. Methods: Condensation of 5-substituted salicylaldehydes and intermediates gave new benzazoles by previously published and developed procedures, which were tested for antibacterial and antiproliferative activity in vitro. Results: The best antibacterial activity showed benzimidazole with 2-imidazolinyl group 27 and benzothiazole with an unsubstituted amidine 48 (minimum inhibitory concentration 8 µg/ml). Benzothiazole 53 proved most potent at inhibiting proliferation of all cancer cells (IC50: 1.2-2.0 µM). Conclusion: Most active compounds have been recognized as lead compounds for additional optimization to improve their biological activity. The type of amidine moiety markedly influenced the biological activity. Benzothiazoles showed improved antiproliferative activity in comparison to benzimidazoles.

12.
Cell ; 186(16): 3427-3442.e22, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37421949

ABSTRACT

SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry. TMEM106B-specific monoclonal antibodies blocked SARS-CoV-2 infection, demonstrating a role of TMEM106B in viral entry. Using X-ray crystallography, cryogenic electron microscopy (cryo-EM), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we show that the luminal domain (LD) of TMEM106B engages the receptor-binding motif of SARS-CoV-2 spike. Finally, we show that TMEM106B promotes spike-mediated syncytium formation, suggesting a role of TMEM106B in viral fusion. Together, our findings identify an ACE2-independent SARS-CoV-2 infection mechanism that involves cooperative interactions with the receptors heparan sulfate and TMEM106B.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Receptors, Virus/metabolism , Virus Internalization , Protein Binding , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
13.
RSC Med Chem ; 14(5): 957-968, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37252100

ABSTRACT

Herein we present the design and the synthesis of novel substituted coumarin-benzimidazole/benzothiazole hybrids bearing a cyclic amidino group on the benzazole core as biologically active agents. All prepared compounds were evaluated for their in vitro antiviral and antioxidative activity as well as for their in vitro antiproliferative activity against a panel of several human cancer cell lines. Coumarin-benzimidazole hybrid 10 (EC50 9.0-43.8 µM) displayed the most promising broad spectrum antiviral activity, while two other coumarin-benzimidazole hybrids 13 and 14 showed the highest antioxidative capacity in the ABTS assay, superior to the reference standard BHT (IC50 0.17 and 0.11 mM, respectively). Computational analysis supported these results and demonstrated that these hybrids benefit from the high C-H hydrogen atom releasing tendency of the cationic amidine unit, and the pronounced ease with which they can liberate an electron, promoted by the electron-donating diethylamine group on the coumarin core. The coumarin ring substitution at position 7 with a N,N-diethylamino group also caused a significant enhancement of the antiproliferative activity, with the most active compounds being derivatives with a 2-imidazolinyl amidine group 13 (IC50 0.3-1.9 µM) and benzothiazole derivative with a hexacyclic amidine group 18 (IC50 1.3-2.0 µM).

14.
Angew Chem Int Ed Engl ; 62(34): e202304476, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37218580

ABSTRACT

Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are modular megaenzymes that employ unusual catalytic domains to assemble diverse bioactive natural products. One such PKS is responsible for the biosynthesis of the oximidine anticancer agents, oxime-substituted benzolactone enamides that inhibit vacuolar H+ -ATPases. Here, we describe the identification of the oximidine gene cluster in Pseudomonas baetica and the characterization of four novel oximidine variants, including a structurally simpler intermediate that retains potent anticancer activity. Using a combination of in vivo, in vitro and computational approaches, we experimentally elucidate the oximidine biosynthetic pathway and reveal an unprecedented mechanism for O-methyloxime formation. We show that this process involves a specialized monooxygenase and methyltransferase domain and provide insight into their activity, mechanism and specificity. Our findings expand the catalytic capabilities of trans-AT PKSs and identify potential strategies for the production of novel oximidine analogues.


Subject(s)
Antineoplastic Agents , Polyketides , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Bacteria , Secondary Metabolism , Polyketides/metabolism
15.
Molecules ; 28(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175129

ABSTRACT

Herein, we present the design and synthesis of novel N-substituted benzimidazole-derived Schiff bases, and the evaluation of their antiviral, antibacterial, and antiproliferative activity. The impact on the biological activity of substituents placed at the N atom of the benzimidazole nuclei and the type of substituents attached at the phenyl ring were examined. All of the synthesized Schiff bases were evaluated in vitro for their antiviral activity against different viruses, antibacterial activity against a panel of bacterial strains, and antiproliferative activity on several human cancer cell lines, thus enabling the study of the structure-activity relationships. Some mild antiviral effects were noted, although at higher concentrations in comparison with the included reference drugs. Additionally, some derivatives showed a moderate antibacterial activity, with precursor 23 being broadly active against most of the tested bacterial strains. Lastly, Schiff base 40, a 4-N,N-diethylamino-2-hydroxy-substituted derivative bearing a phenyl ring at the N atom on the benzimidazole nuclei, displayed a strong antiproliferative activity against several cancer cell lines (IC50 1.1-4.4 µM). The strongest antitumoral effect was observed towards acute myeloid leukemia (HL-60).


Subject(s)
Antineoplastic Agents , Humans , Antineoplastic Agents/pharmacology , Schiff Bases/pharmacology , Cell Proliferation , Structure-Activity Relationship , Benzimidazoles/pharmacology , Antiviral Agents/pharmacology
16.
Biomed Pharmacother ; 160: 114305, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731340

ABSTRACT

Selinexor (KPT-330), a small-molecule inhibitor of exportin-1 (XPO1, CRM1) with potent anticancer activity, has recently been granted FDA approval for treatment of relapsed/refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL), with a number of additional indications currently under clinical investigation. Since selinexor has often demonstrated synergy when used in combination with other drugs, notably bortezomib and dexamethasone, a more comprehensive approach to uncover new beneficial interactions would be of great value. Moreover, stratifying patients, personalizing therapeutics and improving clinical outcomes requires a better understanding of the genetic vulnerabilities and resistance mechanisms underlying drug response. Here, we used CRISPR-Cas9 loss-of-function chemogenetic screening to identify drug-gene interactions with selinexor in chronic myeloid leukemia, multiple myeloma and DLBCL cell lines. We identified the TGFß-SMAD4 pathway as an important mediator of resistance to selinexor in multiple myeloma cells. Moreover, higher activity of this pathway correlated with prolonged progression-free survival in multiple myeloma patients treated with selinexor, indicating that the TGFß-SMAD4 pathway is a potential biomarker predictive of therapeutic outcome. In addition, we identified ASB8 (ankyrin repeat and SOCS box containing 8) as a shared modulator of selinexor sensitivity across all tested cancer types, with both ASB8 knockout and overexpression resulting in selinexor hypersensitivity. Mechanistically, we showed that ASB8 promotes selinexor-induced proteasomal degradation of XPO1. This study provides insight into the genetic factors that influence response to selinexor treatment and could support both the development of predictive biomarkers as well as new drug combinations.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Active Transport, Cell Nucleus , Karyopherins/genetics , Karyopherins/metabolism , Hydrazines/pharmacology , Hydrazines/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Suppressor of Cytokine Signaling Proteins
17.
Nucleic Acids Res ; 51(4): 1501-1511, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36611237

ABSTRACT

An enzymatic method has been successfully established enabling the generation of partially base-modified RNA (previously named RZA) constructs, in which all G residues were replaced by isomorphic fluorescent thienoguanosine (thG) analogs, as well as fully modified RZA featuring thG, 5-bromocytosine, 7-deazaadenine and 5-chlorouracil. The transcriptional efficiency of emissive fully modified RZA was found to benefit from the use of various T7 RNA polymerase variants. Moreover, dthG could be incorporated into PCR products by Taq DNA polymerase together with the other three base-modified nucleotides. Notably, the obtained RNA products containing thG as well as thG together with 5-bromocytosine could function as effectively as natural sgRNAs in an in vitro CRISPR-Cas9 cleavage assay. N1-Methylpseudouridine was also demonstrated to be a faithful non-canonical substitute of uridine to direct Cas9 nuclease cleavage when incorporated in sgRNA. The Cas9 inactivation by 7-deazapurines indicated the importance of the 7-nitrogen atom of purines in both sgRNA and PAM site for achieving efficient Cas9 cleavage. Additional aspects of this study are discussed in relation to the significance of sgRNA-protein and PAM--protein interactions that were not highlighted by the Cas9-sgRNA-DNA complex crystal structure. These findings could expand the impact and therapeutic value of CRISPR-Cas9 and other RNA-based technologies.


With the advent of CRISPR-Cas9 gene editing, we now have to hand a simple two-component system amendable to silencing and knock-in editing effectively any gene. Yet we must not forget that the implications of immunotoxicity along with the poor stability and specificity of canonical nucleic acids hold enormous challenges for in vivo applications, especially in gene therapy. Our study endorses the feasibility of the enzymatic approach to incorporate nucleobase modifications into the CRISPR-Cas9 system unveiling the tolerance of Cas9 to N1-methylpseudouridine (m1Ψ)- and emissive thienoguanosine (thG)-modified sgRNA as well as thus far uncharted structural requirements for ensuring proper PAM recognition.


Subject(s)
CRISPR-Cas Systems , Nucleic Acids , DNA , Gene Editing/methods , RNA/chemistry , Fluorescence , Guanosine/chemistry
18.
Alzheimers Dement ; 19(4): 1245-1259, 2023 04.
Article in English | MEDLINE | ID: mdl-35993441

ABSTRACT

INTRODUCTION: The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are hexanucleotide repeats in chromosome 9 open reading frame 72 (C9orf72). These repeats produce dipeptide repeat proteins with poly(PR) being the most toxic one. METHODS: We performed a kinome-wide CRISPR/Cas9 knock-out screen in human induced pluripotent stem cell (iPSC) -derived cortical neurons to identify modifiers of poly(PR) toxicity, and validated the role of candidate modifiers using in vitro, in vivo, and ex-vivo studies. RESULTS: Knock-down of NIMA-related kinase 6 (NEK6) prevented neuronal toxicity caused by poly(PR). Knock-down of nek6 also ameliorated the poly(PR)-induced axonopathy in zebrafish and NEK6 was aberrantly expressed in C9orf72 patients. Suppression of NEK6 expression and NEK6 activity inhibition rescued axonal transport defects in cortical neurons from C9orf72 patient iPSCs, at least partially by reversing p53-related DNA damage. DISCUSSION: We identified NEK6, which regulates poly(PR)-mediated p53-related DNA damage, as a novel therapeutic target for C9orf72 FTD/ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Animals , Humans , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Induced Pluripotent Stem Cells/metabolism , C9orf72 Protein/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , CRISPR-Cas Systems , Zebrafish/genetics , Zebrafish/metabolism , Neurons/metabolism , DNA Repeat Expansion/genetics , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism
19.
J Neuroinflammation ; 19(1): 293, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482436

ABSTRACT

BACKGROUND: HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is an incapacitating neuroinflammatory disorder for which no disease-modifying therapy is available, but corticosteroids provide some clinical benefit. Although HAM/TSP pathogenesis is not fully elucidated, older age, female sex and higher proviral load are established risk factors. We investigated systemic cytokines and a novel chronic inflammatory marker, GlycA, as possible biomarkers of immunopathogenesis and therapeutic response in HAM/TSP, and examined their interaction with established risk factors. PATIENTS AND METHODS: We recruited 110 People living with HTLV-1 (PLHTLV-1, 67 asymptomatic individuals and 43 HAM/TSP patients) with a total of 946 person-years of clinical follow-up. Plasma cytokine levels (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF) and GlycA were quantified by Cytometric Bead Array and 1NMR, respectively. Cytokine signaling and prednisolone response were validated in an independent cohort by nCounter digital transcriptomics. We used multivariable regression, machine learning algorithms and Bayesian network learning for biomarker identification. RESULTS: We found that systemic IL-6 was positively correlated with both age (r = 0.50, p < 0.001) and GlycA (r = 0.45, p = 0.00049) in asymptomatics, revealing an 'inflammaging" signature which was absent in HAM/TSP. GlycA levels were higher in women (p = 0.0069), but cytokine levels did not differ between the sexes. IFN-γ (p = 0.007) and IL-17A (p = 0.0001) levels were increased in untreated HAM/TSP Multivariable logistic regression identified IL-17A and proviral load as independent determinants of clinical status, resulting in modest accuracy of predicting HAM/TSP status (64.1%), while a machine learning-derived decision tree classified HAM/TSP patients with 90.7% accuracy. Pre-treatment GlycA and TNF levels significantly predicted clinical worsening (measured by Osame Motor Disability Scale), independent of proviral load. In addition, a poor prednisolone response was significantly correlated with higher post-treatment IFN-γ levels. Likewise, a transcriptomic IFN signaling score, significantly correlated with previously proposed HAM/TSP biomarkers (CASP5/CXCL10/FCGR1A/STAT1), was efficiently blunted by in vitro prednisolone treatment of PBMC from PLHTLV-1 and incident HAM/TSP. CONCLUSIONS: An age-related increase in systemic IL-6/GlycA levels reveals inflammaging in PLHTLV-1, in the absence of neurological disease. IFN-γ and IL-17A are biomarkers of untreated HAM/TSP, while pre-treatment GlycA and TNF predict therapeutic response to prednisolone pulse therapy, paving the way for a precision medicine approach in HAM/TSP.


Subject(s)
HTLV-I Infections , Motor Disorders , Neuroinflammatory Diseases , Female , Humans , Bayes Theorem , Cytokines , Human T-lymphotropic virus 1 , Interleukin-17 , Interleukin-6 , Leukocytes, Mononuclear , Motor Disorders/virology , Neuroinflammatory Diseases/virology , HTLV-I Infections/complications
20.
Nat Commun ; 13(1): 5643, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163138

ABSTRACT

Intracellular phase separation is emerging as a universal principle for organizing biochemical reactions in time and space. It remains incompletely resolved how biological function is encoded in these assemblies and whether this depends on their material state. The conserved intrinsically disordered protein PopZ forms condensates at the poles of the bacterium Caulobacter crescentus, which in turn orchestrate cell-cycle regulating signaling cascades. Here we show that the material properties of these condensates are determined by a balance between attractive and repulsive forces mediated by a helical oligomerization domain and an expanded disordered region, respectively. A series of PopZ mutants disrupting this balance results in condensates that span the material properties spectrum, from liquid to solid. A narrow range of condensate material properties supports proper cell division, linking emergent properties to organismal fitness. We use these insights to repurpose PopZ as a modular platform for generating tunable synthetic condensates in human cells.


Subject(s)
Caulobacter crescentus , Intrinsically Disordered Proteins , Bacterial Proteins/metabolism , Biomolecular Condensates , Caulobacter crescentus/metabolism , Cell Division , Humans , Intrinsically Disordered Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL