Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
DNA Repair (Amst) ; 131: 103580, 2023 11.
Article in English | MEDLINE | ID: mdl-37804602

ABSTRACT

Mutations in Presenilin-1 (PS1) account for over 80 % mutations linked to familial Alzheimer's disease (AD). However, the mechanisms of action of PS1 mutations in causing familial AD are not fully understood, limiting opportunities to develop targeted disease-modifying therapies for individuals carrying PS1 mutation. To gain more comprehensive insights into the impact of PS1 mutations on genome stability, we knocked down PS1 in SH-SY5Y, HMC3 and A549 cells. This revealed that PS1 knockdown (KD) dramatically induces genome instability (GIN) in all cell types, as indicated by the increased incidence of micronuclei, nucleoplasmic bridges and/or nuclear buds. Although amyloid ß (Aß) was able to induce GIN, PS1-KD was associated with decreased expression of Aß in SH-SY5Y cells, suggesting Aß is not the primary cause of GIN in PS1-KD cells. In contrast, inhibiting the PS1 γ-secretase activity by DAPT recapitulated GIN phenotype as seen in PS1-KD cells, indicating that the induction of GIN following PS1 KD can be attributed to the loss of γ-secretase activity. PS1 KD or γ-secretase inhibition markedly sensitizes SH-SY5Y to the genotoxicity of mitomycin C. Interestingly, overexpression of the wildtype PS1 dramatically increased GIN in SH-SY5Y. Collectively, our study demonstrates the potential of PS1 and its γ-secretase activity in maintaining genome stability, highlighting a novel potential link between PS1 loss-of-function or gain-of-function mutations and familial AD through GIN. Several mechanisms by which GIN induced by PS1 dys-expression may contribute to AD are discussed.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Mutation , Genomic Instability
2.
Nat Ecol Evol ; 6(11): 1753-1765, 2022 11.
Article in English | MEDLINE | ID: mdl-36192540

ABSTRACT

Ant colonies are higher-level organisms consisting of specialized reproductive and non-reproductive individuals that differentiate early in development, similar to germ-soma segregation in bilateral Metazoa. Analogous to diverging cell lines, developmental differentiation of individual ants has often been considered in epigenetic terms but the sets of genes that determine caste phenotypes throughout larval and pupal development remain unknown. Here, we reconstruct the individual developmental trajectories of two ant species, Monomorium pharaonis and Acromyrmex echinatior, after obtaining >1,400 whole-genome transcriptomes. Using a new backward prediction algorithm, we show that caste phenotypes can be accurately predicted by genome-wide transcriptome profiling. We find that caste differentiation is increasingly canalized from early development onwards, particularly in germline individuals (gynes/queens) and that the juvenile hormone signalling pathway plays a key role in this process by regulating body mass divergence between castes. We quantified gene-specific canalization levels and found that canalized genes with gyne/queen-biased expression were enriched for ovary and wing functions while canalized genes with worker-biased expression were enriched in brain and behavioural functions. Suppression in gyne larvae of Freja, a highly canalized gyne-biased ovary gene, disturbed pupal development by inducing non-adaptive intermediate phenotypes between gynes and workers. Our results are consistent with natural selection actively maintaining canalized caste phenotypes while securing robustness in the life cycle ontogeny of ant colonies.


Subject(s)
Ants , Animals , Female , Ants/genetics , Gene Expression Profiling , Larva/genetics , Phenotype , Transcriptome
3.
Stem Cell Res Ther ; 13(1): 377, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902878

ABSTRACT

BACKGROUND: Breast cancer is the most common malignancy in women worldwide, and its treatment largely depends on mastectomy. Patients after mastectomy suffer from crippled body image, self-esteem, and quality of life. Post-mastectomy breast reconstruction can improve patients' psychosocial health. Although silicone and fat have been widely used for breast reconstruction, they have remarkable limitations. Our study aimed to establish an improved method for breast reconstruction from human-induced pluripotent stem cells (iPSCs). METHODS: We used a two-step procedure to induce mammary-like organoids (MLOs) from iPSCs and applied transcriptome sequencing to analyze the gene expression profiles during the development process from embryoid bodies (mEBs) to MLOs. Moreover, we evaluated the in vitro effect of fibroblasts cell line HFF (human foreskin fibroblasts) on the size and morphology of MLOs and explored the in vivo effect of HFF on regeneration rate of MLOs. RESULTS: MLOs had a similar gene expression profile and morphogenesis as the normal mammary glands. Furthermore, the addition of HFF increases the branching ratio and organoid diameters and facilitates the formation of multiple cell layers duct-like structures in MLOs in vitro. Finally, orthotopical transplantation of the MLOs to cleared mammary gland fad pad of NSG mice showed that HFF increases the formation of mammary gland-like structures. CONCLUSIONS: Fibroblasts facilitate iPSC-derived MLOs to generate mammary gland-like structures in both in vitro and in vivo conditions. Our findings lay a foundation for breast reconstruction by using iPSCs.


Subject(s)
Breast Neoplasms , Induced Pluripotent Stem Cells , Animals , Breast Neoplasms/metabolism , Female , Fibroblasts , Humans , Induced Pluripotent Stem Cells/metabolism , Mastectomy , Mice , Organoids/metabolism , Quality of Life
4.
Nat Ecol Evol ; 6(8): 1191-1204, 2022 08.
Article in English | MEDLINE | ID: mdl-35711063

ABSTRACT

Ant colonies with permanent division of labour between castes and highly distinct roles of the sexes have been conceptualized to be superorganisms, but the cellular and molecular mechanisms that mediate caste/sex-specific behavioural specialization have remained obscure. Here we characterized the brain cell repertoire of queens, gynes (virgin queens), workers and males of Monomorium pharaonis by obtaining 206,367 single-nucleus transcriptomes. In contrast to Drosophila, the mushroom body Kenyon cells are abundant in ants and display a high diversity with most subtypes being enriched in worker brains, the evolutionarily derived caste. Male brains are as specialized as worker brains but with opposite trends in cell composition with higher abundances of all optic lobe neuronal subtypes, while the composition of gyne and queen brains remained generalized, reminiscent of solitary ancestors. Role differentiation from virgin gynes to inseminated queens induces abundance changes in roughly 35% of cell types, indicating active neurogenesis and/or programmed cell death during this transition. We also identified insemination-induced cell changes probably associated with the longevity and fecundity of the reproductive caste, including increases of ensheathing glia and a population of dopamine-regulated Dh31-expressing neurons. We conclude that permanent caste differentiation and extreme sex-differentiation induced major changes in the neural circuitry of ants.


Subject(s)
Ants , Animals , Ants/genetics , Brain/metabolism , Female , Male , Reproduction/physiology , Transcriptome
5.
Ageing Res Rev ; 68: 101342, 2021 07.
Article in English | MEDLINE | ID: mdl-33866012

ABSTRACT

One of the most curious findings emerged from genome-wide studies over the last decade was that genetic mosaicism is a dominant feature of human ageing genomes. The clonal dominance of genetic mosaicism occurs preceding the physiological and physical ageing and associates with propensity for diseases including cancer, Alzheimer's disease, cardiovascular disease and diabetes. These findings are revolutionizing the ways biologists thinking about health and disease pathogenesis. Among all mosaic mutations in ageing genomes, mosaic chromosomal alterations (mCAs) have the most significant functional consequences because they can produce intercellular genomic variations simultaneously involving dozens to hundreds or even thousands genes, and therefore have most profound effects in human ageing and disease etiology. Here, we provide a comprehensive picture of the landscapes, causes, consequences and rejuvenation of mCAs at multiple scales, from cell to human population, by reviewing data from cytogenetic, genetic and genomic studies in cells, animal models (fly and mouse) and, more frequently, large-cohort populations. A detailed decoding of ageing genomes with a focus on mCAs may yield important insights into the genomic architecture of human ageing, accelerate the risk stratification of age-related diseases (particularly cancers) and development of novel targets and strategies for delaying or rejuvenating human (genome) ageing.


Subject(s)
Mosaicism , Neoplasms , Aging/genetics , Animals , Genome, Human/genetics , Humans , Mice , Mutation , Neoplasms/genetics
6.
Mutagenesis ; 36(1): 95-107, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33450026

ABSTRACT

Bulbus of Fritillaria cirrhosa D. Don (BFC), an outstanding antitussive and expectorant herbal drug used in China and many other countries, has potential but less understood genotoxicity. Previously, we have reported that aqueous extract of BFC compromised the spindle assembly checkpoint and cytokinesis in NCM460 cells. Here, we found that one remarkable observation in BFC-treated NCM460 cells was multipolar mitosis, a trait classically compromises the fidelity of chromosome segregation. More detailed investigation revealed that BFC-induced spindle multipolarity in metaphases and ana-telophases in a dose- and time-dependent manner, suggesting BFC-induced multipolar spindle conformation was not transient. The frequency of multipolar metaphase correlated well to that of multipolar ana-telophases, indicating that BFC-induced multipolar metaphases often persisted through anaphase. Unexpectedly, BFC blocked the proliferation of binucleated cells, suggesting spindle multipolarity was not downstream of BFC-induced cytokinesis failure. Exposure of BFC to early mitotic cells, rather than S/G2 cells, contributed greatly to spindle multipolarity, indicating BFC might disrupt centrosome integrity rather than induce centrosome overduplication. The immunofluorescence results showed that the centrosomes were severely fragmented by a short-term treatment of BFC and the extent of centrosome fragmentation in early mitotic cells was larger than this in S/G2 cells. Consistently, several genes (e.g. p53, Rb centrin-2, Plk-4, Plk-1 and Aurora-A) involved in regulating centrosome integrity were significantly deregulated by BFC. Together, our results suggest that BFC causes multipolar spindles primarily by inducing centrosome fragmentation. Coupling these results to our previous observations, we recommend the risk/benefit ratio should be considered in the practical use of BFC.


Subject(s)
Centrosome/metabolism , Colon/drug effects , Epithelial Cells/drug effects , Fritillaria/chemistry , Mitosis , Plant Extracts/pharmacology , Spindle Apparatus/drug effects , Centrosome/drug effects , Colon/metabolism , Epithelial Cells/metabolism , Humans
7.
Int J Cancer ; 148(4): 812-824, 2021 02 15.
Article in English | MEDLINE | ID: mdl-32949152

ABSTRACT

Micronuclei, small spatially-separated, nucleus-like structures, are a common feature of human cancer cells. There are considerable heterogeneities in the sources, structures and genetic activities of micronuclei. Accumulating evidence suggests that micronuclei and main nuclei represent separate entities with respect to DNA replication, DNA damage sensing and repairing capacity because micronuclei are not monitored by the same checkpoints nor covered by the same nuclear envelope as the main nuclei. Thus, micronuclei are spatially restricted "mutation factories." Several large-scale DNA sequencing and bioinformatics studies over the last few years have revealed that most micronuclei display a mutational signature of chromothripsis immediately after their generation and the underlying molecular mechanisms have been dissected extensively. Clonal expansion of the micronucleated cells is context-dependent and is associated with chromothripsis and several other mutational signatures including extrachromosomal circular DNA, kataegis and chromoanasynthesis. These results suggest what was once thought to be merely a passive indicator of chromosomal instability is now being recognized as a strong mutator phenotype that may drive intratumoral genetic heterogeneity. Herein, we revisit the actionable determinants that contribute to the bursts of mutagenesis in micronuclei and present the growing number of evidence which suggests that micronuclei have distinct short- and long-term mutational and functional effects to cancer genomes. We also pose challenges for studying the long-term effects of micronucleation in the upcoming years.


Subject(s)
Cell Nucleus/genetics , DNA Damage , Genomic Instability/genetics , Micronuclei, Chromosome-Defective , Mutation , Neoplasms/genetics , Chromothripsis , Humans , Mitosis/genetics , Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
8.
Chromosoma ; 129(3-4): 181-200, 2020 12.
Article in English | MEDLINE | ID: mdl-32671520

ABSTRACT

Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.


Subject(s)
Cell Nucleus/genetics , Cell Physiological Phenomena , DNA Damage , Micronuclei, Chromosome-Defective , Autophagy , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Chromatin , Chromosomes , Lamin Type B/metabolism , Mitosis , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Proteolysis
9.
Hum Genet ; 139(4): 421-446, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32020362

ABSTRACT

Y chromosome (ChrY), the male-specific sex chromosome, has been considered as a genetic wasteland. Aging-related mosaic loss of ChrY (LOY) has been known for more than half a century, but it was constantly considered as a neutral karyotype related to normal aging. These views have been challenged with genome-wide association studies identifying mosaic LOY in human somatic cells is the most commonly acquired mutation in male's genome and is associated with a wide spectrum of human diseases including cancer, Alzheimer's disease, and cardiovascular disease. These previously undescribed clinical significances deeply modify our perception on ChrY and open up a range of new questions. Here, we review the latest advances in our knowledge of the biological origins and clinical consequences of mosaic LOY. We highlight the association of mosaic LOY to pathogenic conditions and evaluate the cause-and-consequence relationships between mosaic LOY and pathogenesis. The known risk factors of mosaic LOY including age, genetic variants, ChrY structural aberrations and environmental stressors are discussed. In light of evidence from pioneering and more recent studies, we propose the micronucleation hypothesis and centromere-dysfunction and telomere-attrition models to explain how mosaic LOY occurs and why ChrY is prone to lose. We believe it is importantly and timely to extend mosaic LOY research from epidemiological associations to mechanistic studies. In this regard, we outline important gaps and assess several future directions from a biological and clinical perspective. An improved understanding of mosaic LOY will open new pathways to modify and increase healthy aging in males.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Chromosomes, Human, Y , Mosaicism , Neoplasms , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Chromosomes, Human, Y/genetics , Chromosomes, Human, Y/metabolism , Genome-Wide Association Study , Humans , Male , Neoplasms/genetics , Neoplasms/metabolism
10.
Science ; 364(6446)2019 06 21.
Article in English | MEDLINE | ID: mdl-31221830

ABSTRACT

Ruminants are the only extant mammalian group possessing bony (osseous) headgear. We obtained 221 transcriptomes from bovids and cervids and sequenced three genomes representing the only two pecoran lineages that convergently lack headgear. Comparative analyses reveal that bovid horns and cervid antlers share similar gene expression profiles and a common cellular basis developed from neural crest stem cells. The rapid regenerative properties of antler tissue involve exploitation of oncogenetic pathways, and at the same time some tumor suppressor genes are under strong selection in deer. These results provide insights into the evolutionary origin of ruminant headgear as well as mammalian organ regeneration and oncogenesis.


Subject(s)
Antlers/physiology , Regeneration/genetics , Ruminants/genetics , Ruminants/physiology , Animals , Antlers/metabolism , Biological Evolution , Carcinogenesis/genetics , Genes, Tumor Suppressor , Neoplasms/genetics , Neoplasms/veterinary , Organogenesis/genetics , Selection, Genetic , Transcriptome
11.
Mutat Res ; 814: 15-22, 2019 03.
Article in English | MEDLINE | ID: mdl-30682723

ABSTRACT

Patients with type 2 diabetes mellitus (T2DM) are associated with an elevated, but poorly understood baseline of genomic instability (GIN). Expert panels are still debating on whether hyperglycemia is the key element in conferring this high GIN. Since high blood glucose and low blood folate are prevalent in T2DM, we hypothesized that high glucose may work with low folate to induce GIN. Using NCM460, CCD841 and L02 cell lines as in vitro cell models, we investigated the genotoxic effects of high sugars (HS; 1-2% glucose, fructose, galactose or sucrose) alone or in combination with folate deficiency (23 nM, FD) over a course of 7 days by the cytokinesis block micronucleus assay. We found that HS is nongenotoxic to NCM460, CCD841 and L02 cells. However, the combination of HS and FD induced significantly higher levels of micronuclei, nucleoplasmic bridges and nuclear buds. Our in vitro work demonstrates that HS is non-genotoxic under folate repletive condition, but is genotoxic under FD condition. These results provide preclinal proof of concept that concomitant hyperglycemia and low folate may explain, at least in part, the high baseline of GIN in T2DM patients, suggesting that folate levels should be kept under control in order to limit the risk of GIN and carcinogenesis in T2DM.


Subject(s)
Carbohydrate Metabolism/drug effects , DNA Damage , Folic Acid Deficiency/pathology , Folic Acid/pharmacology , Sugars/pharmacology , Carbohydrate Metabolism/genetics , Cells, Cultured , Dose-Response Relationship, Drug , Folic Acid Deficiency/metabolism , Fructose/pharmacology , Galactose/pharmacology , Genomic Instability/drug effects , Humans , Micronucleus Tests , Mutagenicity Tests , Sucrose/pharmacology
12.
Environ Mol Mutagen ; 60(3): 254-268, 2019 04.
Article in English | MEDLINE | ID: mdl-30403302

ABSTRACT

Geraniin has been reported to specifically induce apoptosis in multiple human cancers, but the underlying mechanism is poorly defined. The spindle assembly checkpoint (SAC) is a surveillance system to ensure high-fidelity chromosome segregation during mitosis. Weakening of SAC to enhance chromosome instability (CIN) can be therapeutic because very high levels of CIN are lethal. In this study, we have investigated the effects of geraniin on the SAC of colorectal cancer HCT116 cells and noncancerous colon epithelial CCD841 cells. We find that treatment of HCT116 cells with geraniin leads to dose-dependent decrease of cell proliferation, colony formation, and anchorage-independent growth. Geraniin is found to induce apoptosis in mitotic and postmitotic HCT116 cells. Furthermore, geraniin weakens the SAC function of HCT116 cells by decreasing the transcriptional expression of several SAC kinases (particularly Mad2 and Bub1), which in turn leads to premature anaphase entry, mitotic aberrations, and CIN in HCT116 cells. In contrast, the proliferation of CCD841 cells is slightly inhibited by geraniin. Even more interestingly, geraniin increases the transcriptional expression of several SAC kinases (e.g., Mad1 and BubR1) to strengthen SAC efficiency, which contributes to the reduction of mitotic aberrations and CIN in CCD841 cells. Altogether, our findings reveal that the SAC pathway in human colon cancer and noncancerous cell lineages responses oppositely to geraniin treatment, resulting CIN promotion and suppression, respectively. Specific abrogation of SAC to induce catastrophic CIN in HCT116 cells may account for the selective anticancer action of geraniin.. Environ. Mol. Mutagen. 60:254-268, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/pharmacology , Chromosomal Instability/drug effects , Colonic Neoplasms/genetics , Glucosides/pharmacology , Hydrolyzable Tannins/pharmacology , M Phase Cell Cycle Checkpoints/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , HCT116 Cells , Humans , Phyllanthus emblica/chemistry , Spindle Apparatus/metabolism
13.
Article in English | MEDLINE | ID: mdl-29307372

ABSTRACT

Resveratrol (RSV) is a naturally occurring polyphenolic phytoalexin possessing numerous health-promoting effects. Chromosomal instability (CIN), usually results from defective spindle assembly checkpoint (SAC), is a major contributor to many diseases. While it's recently recognized that RSV exhibits a nonlinear dose response for disease prevention, whether it's the case for its role in CIN remains unknown. Here, we investigated the potential of a broad range of RSV concentrations (0.01-100µM) on CIN and the underlying mechanisms in human normal colon epithelial NCM460 cells. CIN was measured by cytokinesis-block micronucleus assay; mitotic fidelity was determined by aberrant mitosis analysis; SAC activity was assessed by nocodazole-challenge assay, and the expression of SAC genes was examined by RT-qPCR. We found that 0.1µM RSV significantly reduced CIN (P<0.01), while 100µM RSV significantly induced it (P<0.05). Mitotic infidelity was significantly prevented by 0.1µM RSV but promoted by 100µM RSV (P<0.05 for both). Moreover, the function of SAC was sustained and impaired by 0.1µM and 100µM RSV, respectively. Several SAC genes, including Aurora-B, Aurora-C, Plk-1 and CENP-E, were significantly up-regulated and down-regulated by 0.1µM and 100µM RSV, respectively (P<0.05). In conclusion, RSV exhibited a biphasic dose-dependent effect on CIN that was exerted via the regulation of mitotic fidelity through the SAC network. The health implications of these findings were summarized.


Subject(s)
Colon/cytology , M Phase Cell Cycle Checkpoints/drug effects , Resveratrol/toxicity , Aurora Kinase B/genetics , Aurora Kinase C/genetics , Cell Cycle Proteins/genetics , Cell Line , Chromosomal Instability , Chromosomal Proteins, Non-Histone/genetics , Colon/drug effects , Colon/metabolism , Dose-Response Relationship, Drug , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Polo-Like Kinase 1
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(7): 1834-7, 2011 Jul.
Article in Chinese | MEDLINE | ID: mdl-21942034

ABSTRACT

The Schiff base's reduced product N,N-bis(4-methoxybenzyl) ethane-1,2-diamine, which was used as a receptor L, was designed and synthesized for the first time in the present article. It was found that Cu2+ and Fe3+ could quench L in fluorescence observably and Zn2+ and Cd2+ could enhance L remarkably. So the two pair metal cation could set up "OR" logical gate relation with the receptor molecule L, then a logical recognition system be formed. The data of resolved ZnL's single crystal indicated that ZnL belonged to monoclinic (CCDC No. 747994). Integrated spectrum instrument was used to characterize the structure of its alike series of complex compound. According to ZnL's excellent fluorescence character and the ability to exchange with contiguous metal cation, ZnZ+/ZnL/Co2+, Zn2+/ZnL/Nit+ fluorescent molecule switch was designed. It is hoped that the work above could be positive for the development of molecule computer, bio-intellectualized inspection technology (therapy) and instrument.

15.
Magn Reson Imaging ; 29(4): 554-60, 2011 May.
Article in English | MEDLINE | ID: mdl-21277723

ABSTRACT

Novel conjugates of narrow molecular weight distribution of chitosan oligosaccharides (CSn; n=6, 8, 11) with manganese-diethylenetriaminepentaacetic acid (Mn-DTPA) as potential magnetic resonance imaging (MRI) contrast agents were synthesized. The structures were characterized by means of Fourier transform infrared spectra, (13)C nuclear magnetic resonance, size exclusion chromatography and inductively coupled plasma atomic emission spectrometry. The characterization results showed that Mn-DTPA was successfully linked to aminated CSn by an amide function. The magnetic properties were characterized by in vitro and T(1)-weighted FLASH image experiments. Relaxivities studies indicated that Mn-DTPA-CSn (n=8, 11) provided higher relaxivity, either in aqueous or bovine serum albumin solution (0.725 mM), than commercial contrast agent Gd-DTPA. The stability results showed that Mn-DTPA-CSn in aqueous were stable enough to prevent Mn(II) ions from releasing. The preliminary in vitro and T(1)-weighted FLASH image studies suggested that Mn-DTPA-CSn had the advantage of becoming promising MRI contrast agents.


Subject(s)
Chitosan/chemistry , Gadolinium DTPA/pharmacology , Magnetic Resonance Imaging/methods , Manganese/chemistry , Animals , Carbon Isotopes/chemistry , Cattle , Contrast Media/pharmacology , Ions , Molecular Weight , Phantoms, Imaging , Serum Albumin, Bovine/chemistry , Spectrophotometry, Atomic/methods , Spectroscopy, Fourier Transform Infrared , Time Factors
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(12): 3343-6, 2010 Dec.
Article in Chinese | MEDLINE | ID: mdl-21322236

ABSTRACT

A novel ligand(L), (N, N'-bis (4-methylbenzyl) ethane-1, 2-diamine), and its transition metal(II) complex, [ML2 (H2O)2]2+ x 2NO3- (M = Cu(II), Co(II, Ni(II), Zn(II)), have been synthesized and characterized by elemental analysis, IR and 1H NMR. The crystal structure of the Cu-L complex was characterized by X-ray single crystal diffraction, and the results showed a regular octahedral structure in which each metal ion is six--coordinated with four nitrogen atoms from two ligands and two oxygen atoms from two water molecules. The interaction of the complex with calf thymus DNA was investigated by UV spectroscopy and fluorescence spectroscopy, and the results suggest that the complex binds to DNA by electrostatic interaction mode. The binding constant(Cu-L, Co-L, Ni-L, Zn-L) was 1.67 x 10(3), 2.5 x 10(3), 1.35 x 10(3) and 9.85 x 10(2), respectively.


Subject(s)
Copper , DNA/chemistry , Transition Elements , Amines , Animals , Cattle , Crystallography, X-Ray , Ligands , Metals , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...