Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2405029, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838055

ABSTRACT

The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.

2.
Angew Chem Int Ed Engl ; : e202401746, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757221

ABSTRACT

Over 79 % of 6.3 billion tonnes of plastics produced from 1950 to 2015 have been disposed in landfills or found their way to the oceans, where they will reside for up to hundreds of years before being decomposed bringing upon significant dangers to our health and ecosystems. Plastic photoreforming offers an appealing alternative by using solar energy and water to transform plastic waste into value-added chemical commodities, while simultaneously producing green hydrogen via the hydrogen evolution reaction. This review aims to provide an overview of the underlying principles of emerging plastic photoreforming technologies, highlight the challenges associated with experimental protocols and performance assessments, discuss recent global breakthroughs on the photoreforming of plastics, and propose perspectives for future research. A critical assessment of current plastic photoreforming studies shows a lack of standardised conditions, hindering comparison amongst photocatalyst performance. Guidelines to establish a more accurate evaluation of materials and systems are proposed, with the aim to facilitate the translation of promising fundamental discovery in photocatalysts design.

3.
Small ; : e2401333, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602227

ABSTRACT

Amidst these growing sustainability concerns, producing NH4 + via electrochemical NO3 - reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber-Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4 + production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy-efficient NO3RR-to-NH4 + pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4 + production rate (98 nmol s-1 cm-2), selectivity (97.5%) and current density (≈100 mA cm-2) at -1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4 + yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.

4.
Small Methods ; 8(2): e2300427, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37712209

ABSTRACT

Coupling the hydrogen evolution reaction with plastic waste photoreforming provides a synergistic path for simultaneous production of green hydrogen and recycling of post-consumer products, two major enablers for establishment of a circular economy. Graphitic carbon nitride (g-C3 N4 ) is a promising photocatalyst due to its suitable optoelectronic and physicochemical properties, and inexpensive fabrication. Herein, a mechanistic investigation of the structure-activity relationship of g-C3 N4 for poly(ethylene terephthalate) (PET) photoreforming is reported by carefully controlling its fabrication from a subset of earth-abundant precursors, such as dicyandiamide, melamine, urea, and thiourea. These findings reveal that melamine-derived g-C3 N4 with 3 wt.% Pt has significantly higher performance than alternative derivations, achieving a maximum hydrogen evolution rate of 7.33 mmolH2  gcat -1  h-1 , and simultaneously photoconverting PET into valuable organic products including formate, glyoxal, and acetate, with excellent stability for over 30 h of continuous production. This is attributed to the higher crystallinity and associated chemical resistance of melamine-derived g-C3 N4 , playing a major role in stabilization of its morphology and surface properties. These new insights on the role of precursors and structural properties in dictating the photoactivity of g-C3 N4 set the foundation for the further development of photocatalytic processes for combined green hydrogen production and plastic waste reforming.

5.
Heliyon ; 9(11): e21295, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920500

ABSTRACT

This study aims to prepare the energy sector for uncertainty using a foresight tool known as weak signals. Weak signals (subtle signs of emerging issues with significant impact potential) are often overlooked during strategic planning due to their inherent predictive uncertainty. However, the value does not lie in precise forecasting but in broadening the consideration of future possibilities. By proactively monitoring and addressing these otherwise neglected developments, stakeholders can gain early awareness of threats and opportunities and enhance their resilience, adaptability, and innovation. A panel of technology experts identified eight weak signals in this study: 1) growing mistrust and local grid security measures, 2) consumer reactions to overly prescriptive policies, 3) long-term forecasting errors for thin-margin projects, 4) emergence of variable power industries, and 5) establishment of intercontinental transmission precedence; including three potential 'wild cards' requiring proactive mitigation: 6) escalating electrical generation dependence on continued imports, 7) a new threat surpassing climate change, and 8) mass deployment of low-emissions technology triggering a runaway loss of social license. Political factors were the predominant source of uncertainty, as decisions can suddenly transform the energy landscape. Economic, technological, and social factors followed closely behind, generally through the emergence of new industries and behavioural responses. While environmental and legal factors were less frequent, stakeholders should still adopt a holistic approach, as the signals were found to be highly interconnected. Organisations should also assess their local context when applying these findings and continuously update and respond to their own list of weak signals.

6.
Small ; : e2304650, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863809

ABSTRACT

Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2 O3 , SiO2 , TiO2 , SnO2 , and HfO2 , prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3 O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3 O4 following the order of HfO2 > SnO2 > TiO2 > Al2 O3 , SiO2 . An optimal HfO2 layer thickness of 12 nm enhances the Co3 O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm-2 in 1 m H2 SO4 electrolyte. Density functional theory is used to investigate the superior performance of HfO2 , revealing a major role of the HfO2 |Co3 O4 interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth-abundant materials for low-pH OER catalysts with improved performance from earth-abundant materials for efficient hydrogen production.

7.
Small ; 19(40): e2302338, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37267930

ABSTRACT

Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.

8.
Adv Mater ; 35(30): e2301506, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37116867

ABSTRACT

Bottom-up electrochemical synthesis of atomically thin materials is desirable yet challenging, especially for non-van der Waals (non-vdW) materials. Thicknesses below a few nanometers have not been reported yet, posing the question how thin can non-vdW materials be electrochemically synthesized. This is important as materials with (sub-)unit-cell thickness often show remarkably different properties compared to their bulk form or thin films of several nanometers thickness. Here, a straightforward electrochemical method utilizing the angstrom-confinement of laminar reduced graphene oxide (rGO) nanochannels is introduced to obtain a centimeter-scale network of atomically thin (<4.3 Å) 2D-transition metal oxides (2D-TMO). The angstrom-confinement provides a thickness limitation, forcing sub-unit-cell growth of 2D-TMO with oxygen and metal vacancies. It is showcased that Cr2 O3 , a material without significant catalytic activity for the oxygen evolution reaction (OER) in bulk form, can be activated as a high-performing catalyst if synthesized in the 2D sub-unit-cell form. This method displays the high activity of sub-unit-cell form while retaining the stability of bulk form, promising to yield unexplored fundamental science and applications. It is shown that while retaining the advantages of bottom-up electrochemical synthesis, like simplicity, high yield, and mild conditions, the thickness of TMO can be limited to sub-unit-cell dimensions.

9.
Small ; 19(25): e2208074, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36932896

ABSTRACT

Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2 ) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3 O4 ) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3 O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm-2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g-1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3 O4 as a low-cost material for green hydrogen electrocatalysis at large scales.

10.
Adv Mater ; 35(28): e2205814, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36813733

ABSTRACT

Sluggish reaction kinetics and the undesired side reactions (hydrogen evolution reaction and self-reduction) are the main bottlenecks of electrochemical conversion reactions, such as the carbon dioxide and nitrate reduction reactions (CO2 RR and NO3 RR). To date, conventional strategies to overcome these challenges involve electronic structure modification and modulation of the charge-transfer behavior. Nonetheless, key aspects of surface modification, focused on boosting the intrinsic activity of active sites on the catalyst surface, are yet to be fully understood. Engingeering of oxygen vacancies (OVs) can tune surface/bulk electronic structure and improve surface active sites of electrocatalysts. The continuous breakthroughs and significant progress in the last decade position engineering of OVs as a potential technique for advancing electrocatalysis. Motivated by this, the state-of-the-art findings of the roles of OVs in both the CO2 RR and the NO3 RR are presented. The review starts with a description of approaches to constructing and techniques for characterizing OVs. This is followed by an overview of the mechanistic understanding of the CO2 RR and a detailed discussion on the roles of OVs in the CO2 RR. Then, insights into the NO3 RR mechanism and the potential of OVs on NO3 RR based on early findings are highlighted. Finally, the challenges in designing CO2 RR/NO3 RR electrocatalysts and perspectives in studying OV engineering are provided.

11.
Angew Chem Int Ed Engl ; 61(37): e202206915, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35894267

ABSTRACT

The electrochemical oxygen reduction reaction (ORR) provides a green route for decentralized H2 O2 synthesis, where a structure-selectivity relationship is pivotal for the control of a highly selective and active two-electron pathway. Here, we report the fabrication of a boron and nitrogen co-doped turbostratic carbon catalyst with tunable B-N-C configurations (CNB-ZIL) by the assistance of a zwitterionic liquid (ZIL) for electrochemical hydrogen peroxide production. Combined spectroscopic analysis reveals a fine tailored B-N moiety in CNB-ZIL, where interfacial B-N species in a homogeneous distribution tend to segregate into hexagonal boron nitride domains at higher pyrolysis temperatures. Based on the experimental observations, a correlation between the interfacial B-N moieties and HO2 - selectivity is established. The CNB-ZIL electrocatalysts with optimal interfacial B-N moieties exhibit a high HO2 - selectivity with small overpotentials in alkaline media, giving a HO2 - yield of ≈1787 mmol gcatalyst -1 h-1 at -1.4 V in a flow-cell reactor.

12.
Article in English | MEDLINE | ID: mdl-35838141

ABSTRACT

The large-scale deployment of proton-exchange membrane water electrolyzers for high-throughput sustainable hydrogen production requires transition from precious noble metal anode electrocatalysts to low-cost earth-abundant materials. However, such materials are commonly insufficiently stable and/or catalytically inactive at low pH, and positive potentials required to maintain high rates of the anodic oxygen evolution reaction (OER). To address this, we explore the effects of a dielectric nanoscale-thin layer, constituted of amorphous TiO2, on the stability and electrocatalytic activity of nanostructured OER anodes based on low-cost Co3O4. We demonstrate a direct correlation between the OER performance and the thickness of the atomic layer deposited TiO2 layers. An optimal TiO2 layer thickness of 4.4 nm enhances the anode lifetime by a factor of ca. 3, achieving 80 h of continuous electrolysis at pH near zero, while preserving high OER catalytic activity of the bare Co3O4 surface. Thinner and thicker TiO2 layers decrease the stability and activity, respectively. This is attributed to the pitting of the TiO2 layer at the optimal thickness, which allows for access to the catalytically active Co3O4 surface while stabilizing it against corrosion. These insights provide directions for the engineering of active and stable composite earth-abundant materials for acidic water splitting for high-throughput hydrogen production.

13.
ACS Appl Mater Interfaces ; 13(45): 53798-53809, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34730334

ABSTRACT

Electrolytic hydrogen evolution reaction (HER) that can be performed efficiently in neutral conditions enables the direct splitting of seawater. However, the sluggish water dissociation kinetics in neutral media severely limits the practical deployment of this technology. Herein, we present a simple strategy to rationally design oxophilic and nucleophilic moieties through the in situ reconstruction of a free-standing bimetallic cobalt-iron phosphate electrode. Through an electrochemical reduction step, the electrode surface undergoes self-reconstruction to generate a thin (oxy)hydroxide layer, enabling a significantly improved HER activity in both buffered electrolyte and natural seawater. Our mechanistic investigations reveal the essential role of oxophilic (oxy)hydroxide species in improving the HER activity of nucleophilic bimetallic phosphate sites. In a buffer electrolyte (pH = 7), the resultant electrocatalyst only requires overpotentials of 97 and 198 mV to deliver a current density of 10 and 100 mA cm-2, respectively, which outperforms that of the Pt benchmark. The in situ reconstruction strategy of active sites within such electrodes brings significant opportunity in developing active electrocatalysts that are capable of direct seawater splitting.

14.
Chem Asian J ; 16(23): 3999-4005, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34653318

ABSTRACT

We investigated the CO2 adsorption and electrochemical conversion behavior of triazole-based C3 N5 nanorods as a single matrix for consecutive CO2 capture and conversion. The pore size, basicity, and binding energy were tailored to identify critical factors for consecutive CO2 capture and conversion over carbon nitrides. Temperature-programmed desorption (TPD) analysis of CO2 demonstrates that triazole-based C3 N5 shows higher basicity and stronger CO2 binding energy than g-C3 N4 . Triazole-based C3 N5 nanorods with 6.1 nm mesopore channels exhibit better CO2 adsorption than nanorods with 3.5 and 5.4 nm mesopore channels. C3 N5 nanorods with wider mesopore channels are effective in increasing the current density as an electrocatalyst during the CO2 reduction reaction. Triazole-based C3 N5 nanorods with tailored pore sizes exhibit CO2 adsorption abilities of 5.6-9.1 mmol/g at 0 °C and 30 bar. Their Faraday efficiencies for reducing CO2 to CO are 14-38% at a potential of -0.8 V vs. RHE.

15.
ACS Nano ; 15(7): 12006-12018, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34192868

ABSTRACT

In this study, we propose a top-down approach for the controlled preparation of undercoordinated Ni-Nx (Ni-hG) and Fe-Nx (Fe-hG) catalysts within a holey graphene framework, for the electrochemical CO2 reduction reaction (CO2RR) to synthesis gas (syngas). Through the heat treatment of commercial-grade nitrogen-doped graphene, we prepared a defective holey graphene, which was then used as a platform to incorporate undercoordinated single atoms via carbon defect restoration, confirmed by a range of characterization techniques. We reveal that these Ni-hG and Fe-hG catalysts can be combined in any proportion to produce a desired syngas ratio (1-10) across a wide potential range (-0.6 to -1.1 V vs RHE), required commercially for the Fischer-Tropsch (F-T) synthesis of liquid fuels and chemicals. These findings are in agreement with our density functional theory calculations, which reveal that CO selectivity increases with a reduction in N coordination with Ni, while unsaturated Fe-Nx sites favor the hydrogen evolution reaction (HER). The potential of these catalysts for scale up is further demonstrated by the unchanged selectivity at elevated temperature and stability in a high-throughput gas diffusion electrolyzer, displaying a high-mass-normalized activity of 275 mA mg-1 at a cell voltage of 2.5 V. Our results provide valuable insights into the implementation of a simple top-down approach for fabricating active undercoordinated single atom catalysts for decarbonized syngas generation.

16.
Materials (Basel) ; 14(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073400

ABSTRACT

The palm oil industry produces liquid waste called POME (palm oil mill effluent). POME is stated as one of the wastes that are difficult to handle because of its large production and ineffective treatment. It will disturb the ecosystem with a high organic matter content if the waste is disposed directly into the environment. The authorities have established policies and regulations in the POME waste quality standard before being discharged into the environment. However, at this time, there are still many factories in Indonesia that have not been able to meet the standard of POME waste disposal with the existing treatment technology. Currently, the POME treatment system is still using a conventional system known as an open pond system. Although this process can reduce pollutants' concentration, it will produce much sludge, requiring a large pond area and a long processing time. To overcome the inability of the conventional system to process POME is believed to be a challenge. Extensive effort is being invested in developing alternative technologies for the POME waste treatment to reduce POME waste safely. Several technologies have been studied, such as anaerobic processes, membrane technology, advanced oxidation processes (AOPs), membrane technology, adsorption, steam reforming, and coagulation. Among other things, an AOP, namely photocatalytic technology, has the potential to treat POME waste. This paper provides information on the feasibility of photocatalytic technology for treating POME waste. Although there are some challenges in this technology's large-scale application, this paper proposes several strategies and directions to overcome these challenges.

17.
iScience ; 24(6): 102539, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142047

ABSTRACT

The high variability and intermittency of wind and solar farms raise questions of how to operate electrolyzers reliably, economically, and sustainably using predominantly or exclusively variable renewables. To address these questions, we develop a comprehensive cost framework that extends to include factors such as performance degradation, efficiency, financing rates, and indirect costs to assess the economics of 10 MW scale alkaline and proton-exchange membrane electrolyzers to generate hydrogen. Our scenario analysis explores a range of operational configurations, considering (i) current and projected wholesale electricity market data from the Australian National Electricity Market, (ii) existing solar/wind farm generation curves, and (iii) electrolyzer capital costs/performance to determine costs of H2 production in the near (2020-2040) and long term (2030-2050). Furthermore, we analyze dedicated off-grid integrated electrolyzer plants as an alternate operating scenario, suggesting oversizing renewable nameplate capacity with respect to the electrolyzer to enhance operational capacity factors and achieving more economical electrolyzer operation.

18.
Nano Lett ; 20(6): 4403-4409, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32369376

ABSTRACT

Metallic foams, with intrinsic catalytic properties, are critical for heterogeneous catalysis reactions and reactor designs. Market ready catalytic foams are costly and made of multimaterial coatings with large sub-millimeter open cells providing insufficient active surface area. Here we use the principle of nanometallurgy within liquid metals to prepare nanostructured catalytic metal foams using a low-cost alloy of bismuth and tin with sub-micrometer open cells. The eutectic bismuth and tin liquid metal alloy was processed into nanoparticles and blown into a tin and bismuth nanophase separated heterostructure in aqueous media at room temperature and using an indium brazing agent. The CO2 electroconversion efficiency of the catalytic foam is presented with an impressive 82% conversion efficiency toward formates at high current density of -25 mA cm-2 (-1.2 V vs RHE). Nanometallurgical process applied to liquid metals will lead to exciting possibilities for expanding industrial and research accessibility of catalytic foams.

19.
ACS Appl Mater Interfaces ; 12(8): 9307-9315, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32023413

ABSTRACT

Controllable concomitant production of CO and H2 (syngas) during electrochemical CO2 reduction reactions (CO2RR) is expected to improve the commercial feasibility of the technology to mitigate CO2 emissions as the generated syngas can be converted into useful chemicals using the commercial Fischer-Tropsch (FT) process. Herein, we demonstrate the ability of a Co single-atom-decorated N-doped graphitic carbon shell-encapsulated cobalt nanoparticle electrocatalyst (referred as Co@CoNC-900) to controllably produce syngas at low overpotentials during CO2RR. Through the engineering and modulation of dual active sites for CO2RR (modified carbon shell with encapsulated Co) and hydrogen evolution reaction (Co-N4 moieties) within Co@CoNC by varying the annealing temperature, we are able to tune the H2: CO ratio from 1: 2 to 1: 1 to 3: 2 over a wide range of applied potentials (-0.5 V to -0.8 V versus reversible hydrogen electrode, RHE). This versatile control of H2: CO ratio in CO2RR reaction brings up significant opportunity of using CO2 and H2O and renewable energy for producing a range of chemicals.

20.
Nat Commun ; 10(1): 4645, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604939

ABSTRACT

The nascent field of nanotechnology-enabled metallurgy has great potential. However, the role of eutectic alloys and the nature of alloy solidification in this field are still largely unknown. To demonstrate one of the promises of liquid metals in the field, we explore a model system of catalytically active Bi-Sn nano-alloys produced using a liquid-phase ultrasonication technique and investigate their phase separation, surface oxidation, and nucleation. The Bi-Sn ratio determines the grain boundary properties and the emergence of dislocations within the nano-alloys. The eutectic system gives rise to the smallest grain dimensions among all Bi-Sn ratios along with more pronounced dislocation formation within the nano-alloys. Using electrochemical CO2 reduction and photocatalysis, we demonstrate that the structural peculiarity of the eutectic nano-alloys offers the highest catalytic activity in comparison with their non-eutectic counterparts. The fundamentals of nano-alloy formation revealed here may establish the groundwork for creating bimetallic and multimetallic nano-alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...