Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 127(9): 097402, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506196

ABSTRACT

Optical excitation perturbs the balance of phenomena selecting the tilt orientation of domain walls within ferroelectric thin films. The high carrier density induced in a low-strain BaTiO_{3} thin film by an above-band-gap ultrafast optical pulse changes the tilt angle that 90° a/c domain walls form with respect to the substrate-film interface. The dynamics of the changes are apparent in time-resolved synchrotron x-ray scattering studies of the domain diffuse scattering. Tilting occurs at 298 K, a temperature at which the a/b and a/c domain phases coexist but is absent at 343 K in the better ordered single-phase a/c regime. Phase coexistence at 298 K leads to increased domain-wall charge density, and thus a larger screening effect than in the single-phase regime. The screening mechanism points to new directions for the manipulation of nanoscale ferroelectricity.

2.
Phys Rev Lett ; 123(8): 087603, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31491229

ABSTRACT

Very sensitive responses to external forces are found near phase transitions. However, transition dynamics and preequilibrium phenomena are difficult to detect and control. We have observed that the equilibrium domain structure following a phase transition in ferroelectric and ferroelastic BaTiO_{3} is attained by halving of the domain periodicity multiple times. The process is reversible, with periodicity doubling as temperature is increased. This observation is reminiscent of the period-doubling cascades generally observed during bifurcation phenomena, and, thus, it conforms to the "spatial chaos" regime earlier proposed by Jensen and Bak [Phys. Scr. T 9, 64 (1985)PHSTER0281-184710.1088/0031-8949/1985/T9/009] for systems with competing spatial modulations.

SELECTION OF CITATIONS
SEARCH DETAIL