Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13400, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862596

ABSTRACT

The intended research aims to explore the convection phenomena of a hybrid nanofluid composed of gold and silver nanoparticles. This research is novel and significant because there is a lack of existing studies on the flow behavior of hybrid nanoparticles with important physical properties of blood base fluids, especially in the case of sidewall ruptured dilated arteries. The implementation of combined nanoparticles rather than unadulterated nanoparticles is one of the most crucial elements in boosting the thermal conduction of fluids. The research methodology encompasses the utilization of advanced bio-fluid dynamics software for simulating the flow of the nanofluid. The physical context elucidates the governing equations of momentum, mass, momentum, and energy in terms of partial differential equations. The results are displayed in both tabular and graphical forms to demonstrate the numerical and graphical solutions. The effect of physical parameters on velocity distribution is illustrated through graphs. Furthermore, the study's findings are unique and original, and these computational discoveries have not been published by any researcher before. The finding implies that utilizing hybrid nanoparticles as drug carriers holds great promise in mitigating the effects of blood flow, potentially enhancing drug delivery, and minimizing its impact on the body.


Subject(s)
Hemodynamics , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Gold/chemistry , Computer Simulation , Arteries , Silver/chemistry , Nanoparticles/chemistry , Models, Cardiovascular , Hydrodynamics
2.
Sci Rep ; 13(1): 15588, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37731005

ABSTRACT

This article scrutinizes blood circulation through an artery having magnetized hybrid nanoparticles (silver and gold) with multiple stenoses at the outer walls and erratic thrombus of different radii at the center. In the realm of biomedical innovation, magnetized hybrid nanoparticles emerge as a captivating frontier. These nanoparticles, amalgamating diverse materials, exhibit magnetic properties that engender novel prospects for targeted drug delivery, medical imaging enhancement, and therapeutic interventions. The study was carried out employing modern bio-fluid dynamics (BFD) software. In this iterative procedure, a second-order finite difference approach is used to solve the governing equations with 0.005 tolerance. The experiment is performed on a blood conduit with mild stenosis assumptions, and expressions of temperature, resistance impedance to flow, velocity, wall shear stress, and pressure gradient are generated by employing related boundary conditions. No one has ever attempted to acquire the remedial impact of an induced magnetic field and hybrid nanoparticles on the bloodstream in a tapering artery containing multiple stenoses on the outside walls and multi-thrombus at the center using 3-D bio-fluid simulation. Furthermore, the study's findings are unique, and these computational discoveries were not previously published by any researcher. The findings suggest that hybrid nanoparticles can be used as medication carriers to reduce the impact of thrombosis and stenosis-induced resistance to blood flow or coagulation-related factors.


Subject(s)
Coleoptera , Thrombosis , Animals , Constriction, Pathologic , Hot Temperature , Symbiosis , Arteries
SELECTION OF CITATIONS
SEARCH DETAIL
...