Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 150(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37602496

ABSTRACT

Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.


Subject(s)
Butterflies , Pigmentation , Animals , Pigmentation/genetics , Butterflies/genetics , Butterflies/metabolism , Signal Transduction/genetics , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Wings, Animal/metabolism
2.
Mol Cell ; 82(4): 803-815.e5, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35077705

ABSTRACT

The hormone-stimulated glucocorticoid receptor (GR) modulates transcription by interacting with thousands of enhancers and GR binding sites (GBSs) throughout the genome. Here, we examined the effects of GR binding on enhancer dynamics and investigated the contributions of individual GBSs to the hormone response. Hormone treatment resulted in genome-wide reorganization of the enhancer landscape in breast cancer cells. Upstream of the DDIT4 oncogene, GR bound to four sites constituting a hormone-dependent super enhancer. Three GBSs were required as hormone-dependent enhancers that differentially promoted histone acetylation, transcription frequency, and burst size. Conversely, the fourth site suppressed transcription and hormone treatment alleviated this suppression. GR binding within the super enhancer promoted a loop-switching mechanism that allowed interaction of the DDIT4 TSS with the active GBSs. The unique functions of each GR binding site contribute to hormone-induced transcriptional heterogeneity and demonstrate the potential for targeted modulation of oncogene expression.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Dexamethasone/pharmacology , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Receptors, Glucocorticoid/agonists , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Binding Sites , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Signal Transduction , Transcription Factors/genetics
3.
Dev Dyn ; 248(8): 657-670, 2019 08.
Article in English | MEDLINE | ID: mdl-31107575

ABSTRACT

BACKGROUND: The color patterns that adorn lepidopteran wings are ideal for studying cell type diversity using a phenomics approach. Color patterns are made of chitinous scales that are each the product of a single precursor cell, offering a 2D system where phenotypic diversity can be studied cell by cell, both within and between species. Those scales reveal complex ultrastructures in the sub-micrometer range that are often connected to a photonic function, including iridescent blues and greens, highly reflective whites, or light-trapping blacks. RESULTS: We found that during scale development, Fascin immunostainings reveal punctate distributions consistent with a role in the control of actin patterning. We quantified the cytoskeleton regularity as well as its relationship to chitin deposition sites, and confirmed a role in the patterning of the ultrastructures of the adults scales. Then, in an attempt to characterize the range and variation in lepidopteran scale ultrastructures, we devised a high-throughput method to quickly derive multiple morphological measurements from fluorescence images and scanning electron micrographs. We imaged a multicolor eyespot element from the butterfly Vanessa cardui (V. cardui), taking approximately 200 000 individual measurements from 1161 scales. Principal component analyses revealed that scale structural features cluster by color type, and detected the divergence of non-reflective scales characterized by tighter cross-rib distances and increased orderedness. CONCLUSION: We developed descriptive methods that advance the potential of butterfly wing scales as a model system for studying how a single cell type can differentiate into a multifaceted spectrum of complex morphologies. Our data suggest that specific color scales undergo a tight regulation of their ultrastructures, and that this involves cytoskeletal dynamics during scale growth.


Subject(s)
Butterflies/anatomy & histology , Cytoskeleton/physiology , Pigmentation , Wings, Animal/ultrastructure , Actins/ultrastructure , Animals , Butterflies/cytology , Cell Differentiation , Microscopy, Electron, Scanning , Wings, Animal/cytology
4.
Cell ; 176(1-2): 213-226.e18, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30554876

ABSTRACT

Transcriptional regulation in metazoans occurs through long-range genomic contacts between enhancers and promoters, and most genes are transcribed in episodic "bursts" of RNA synthesis. To understand the relationship between these two phenomena and the dynamic regulation of genes in response to upstream signals, we describe the use of live-cell RNA imaging coupled with Hi-C measurements and dissect the endogenous regulation of the estrogen-responsive TFF1 gene. Although TFF1 is highly induced, we observe short active periods and variable inactive periods ranging from minutes to days. The heterogeneity in inactive times gives rise to the widely observed "noise" in human gene expression and explains the distribution of protein levels in human tissue. We derive a mathematical model of regulation that relates transcription, chromosome structure, and the cell's ability to sense changes in estrogen and predicts that hypervariability is largely dynamic and does not reflect a stable biological state.


Subject(s)
Gene Expression Regulation/physiology , Gene Expression/physiology , Transcription, Genetic/physiology , Estrogen Receptor alpha/metabolism , Estrogens , Gene Expression/genetics , Humans , Models, Theoretical , Promoter Regions, Genetic/physiology , RNA, Messenger/metabolism , Single-Cell Analysis/methods , Transcription, Genetic/genetics , Transcriptional Activation/physiology , Trefoil Factor-1/genetics
5.
Biochim Biophys Acta ; 1860(6): 1098-106, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26850693

ABSTRACT

BACKGROUND: Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant, whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs, a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. SCOPE OF REVIEW: The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. MAJOR CONCLUSIONS: A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. GENERAL SIGNIFICANCE: The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease.


Subject(s)
Betaine/therapeutic use , Liver Diseases/drug therapy , Animals , Betaine/chemistry , Betaine/metabolism , Humans , Kidney/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy
6.
Methods ; 96: 59-68, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26655523

ABSTRACT

In eukaryotes, mRNA synthesis is catalyzed by RNA polymerase II and involves several distinct steps, including transcript initiation, elongation, cleavage, and transcript release. Splicing of RNA can occur during (co-transcriptional) or after (post-transcriptional) RNA synthesis. Thus, RNA synthesis and processing occurs through the concerted activity of dozens of enzymes, each of which is potentially susceptible to perturbation by small molecules. However, there are few, if any, high-throughput screening strategies for identifying drugs which perturb a specific step in RNA synthesis and processing. Here we have developed a high-throughput fluorescence microscopy approach in single cells to screen for inhibitors of specific enzymatic steps in RNA synthesis and processing. By utilizing the high affinity interaction between bacteriophage capsid proteins (MS2, PP7) and RNA stem loops, we are able to fluorescently label the intron and exon of a ß-globin reporter gene in human cells. This approach allows one to measure the kinetics of transcription, splicing and release in both fixed and living cells using a tractable, genetically encoded assay in a stable cell line. We tested this reagent in a targeted screen of molecules that target chromatin readers and writers and identified three compounds that slow transcription elongation without changing transcription initiation.


Subject(s)
High-Throughput Screening Assays , Microscopy, Fluorescence/methods , RNA Splicing/drug effects , Single-Cell Analysis/methods , Small Molecule Libraries/pharmacology , Transcription Elongation, Genetic/drug effects , Transcription Initiation, Genetic , Chromatin/chemistry , Chromatin/drug effects , Chromatin/metabolism , Exons , Genes, Reporter , Humans , Introns , Inverted Repeat Sequences , Kinetics , Levivirus/genetics , Levivirus/metabolism , RNA Polymerase II/antagonists & inhibitors , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , beta-Globins/genetics , beta-Globins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...