Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 169(3): 671-84, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23488746

ABSTRACT

BACKGROUND AND PURPOSE: Nutrient sensing in the gut is believed to be accomplished through activation of GPCRs expressed on enteroendocrine cells. In particular, L-cells located predominantly in distal regions of the gut secrete glucagon-like peptide 1 (GLP-1) and peptide tyrosine-tyrosine (PYY) upon stimulation by nutrients and bile acids (BA). The study was designed to address the mechanism of hormone secretion in L-cells stimulated by the BA receptor G protein-coupled bile acid receptor 1 (GPBAR1). EXPERIMENTAL APPROACH: A novel, selective, orally bioavailable, and potent GPBAR1 agonist, RO5527239, was synthesized in order to investigate L-cell secretion in vitro and in vivo in mice and monkey. In analogy to BA, RO5527239 was conjugated with taurine to reduce p.o. bioavailability yet retaining its potency. Using RO5527239 and tauro-RO5527239, the acute secretion effects on L-cells were addressed via different routes of administration. KEY RESULTS: GPBAR1 signalling triggers the co-secretion of PYY and GLP-1, and leads to improved glucose tolerance. The strong correlation of plasma drug exposure and plasma PYY levels suggests activation of GPBAR1 from systemically accessible compartments. In contrast to the orally bioavailable agonist RO5527239, we show that tauro-RO5527239 triggers PYY release only when applied intravenously. Compared to mice, a slower and more sustained PYY secretion was observed in monkeys. CONCLUSION AND IMPLICATIONS: Selective GPBAR1 activation elicits a strong secretagogue effect on L-cells, which primarily requires systemic exposure. We suggest that GPBAR1 is a key player in the intestinal proximal-distal loop that mediates the early phase of nutrient-evoked L-cell secretion effects.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enteroendocrine Cells/drug effects , Gastrointestinal Agents/therapeutic use , Glucagon-Like Peptide 1/metabolism , Isonipecotic Acids/therapeutic use , Oximes/therapeutic use , Peptide YY/metabolism , Piperidines/therapeutic use , Receptors, G-Protein-Coupled/agonists , Animals , CHO Cells , Cell Line , Cricetulus , Diabetes Mellitus, Type 2/metabolism , Enteroendocrine Cells/metabolism , Gastrointestinal Agents/metabolism , Gastrointestinal Agents/pharmacokinetics , Gastrointestinal Agents/pharmacology , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Isonipecotic Acids/metabolism , Isonipecotic Acids/pharmacokinetics , Isonipecotic Acids/pharmacology , Macaca fascicularis , Male , Metabolic Detoxication, Phase II , Mice , Mice, Mutant Strains , Mice, Transgenic , Oximes/metabolism , Oximes/pharmacokinetics , Oximes/pharmacology , Piperidines/metabolism , Piperidines/pharmacokinetics , Piperidines/pharmacology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Taurine/metabolism
2.
Biochem Biophys Res Commun ; 412(3): 419-24, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21827738

ABSTRACT

Ligand-biased receptor signaling has been proposed for several G-protein coupled receptors including the niacin receptor GPR109A. Coupling to the G(i/o) pathway has been shown to be responsible for the well described triglyceride lowering effect of nicotinic acid in mice, while activation of the ß-arrestin pathway has been suggested to be responsible for its peripheral vasodilatory effect that causes cutaneous flushing. Several ligands have been described to selectively induce triglyceride lowering without inducing flushing. Cellular impedance has been demonstrated to determine G-protein coupled receptors activation in a G-protein specific manner. Agonists, which induce triglyceride lowering, but not flushing show a profile in cellular impedance that is distinct from the one induced by niacin and those compounds that induce triglyceride lowering as well as flushing. The strength of the signal correlates with the activation of ß-arrestin.


Subject(s)
Electric Impedance , Receptors, G-Protein-Coupled/agonists , Animals , Cell Line , Humans , Ligands , Mice , Niacin/pharmacology , Receptors, G-Protein-Coupled/analysis , Receptors, Nicotinic/analysis , Signal Transduction , Triglycerides/metabolism
3.
J Lipid Res ; 38(2): 373-90, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9162756

ABSTRACT

2,3-Oxidosqualene:lanosterol cyclase (OSC, E.C. 5.4.99.7) represents a unique target for a cholesterol lowering drug. Partial inhibition of OSC should reduce synthesis of lanosterol and subsequent sterols, and also stimulate the production of epoxysterols that repress HMG-CoA reductase expression, generating a synergistic, self-limited negative regulatory loop. Hence, the pharmacological properties of Ro 48-8.071, a new OSC inhibitor, were compared to that of an HMG-CoA reductase inhibitor, simvastatin. Ro 48-8.071 blocked human liver OSC and cholesterol synthesis in HepG2 cells in the nanomolar range; in cells it triggered the production of monooxidosqualene, dioxidosqualene, and epoxycholesterol. It was safe in hamsters, squirrel monkeys and Göttingen minipigs at pharmacologically active doses, lowering LDL approximately 60% in hamsters, and at least 30% in the two other species, being at least as efficacious as safe doses of simvastatin. The latter was hepatotoxic in hamsters at doses > 30 mumol/kg/day limiting its window of efficacy. Hepatic monooxidosqualene increased dose-dependently after treatment with Ro 48-8.071, up to approximately 20 micrograms/g wet liver or less than 1% of hepatic cholesterol, and it was inversely correlated with LDL levels. Ro 48-8.071 did not reduce coenzyme Q10 levels in liver and heart of hamsters, and importantly did not trigger an overexpression of hepatic HMG-CoA reductase, squalene synthase, and OSC itself. In strong contrast, simvastatin stimulated these enzymes dramatically, and reduced coenzyme Q10 levels in liver and heart. Altogether these findings clearly differentiate the OSC inhibitor Ro 48-8.071 from simvastatin, and support the view that OSC is a distinct key component in the regulation of the cholesterol synthesis pathway.


Subject(s)
Benzophenones/pharmacology , Cholesterol/analysis , Cholesterol/blood , Enzyme Inhibitors/pharmacology , Intramolecular Transferases/antagonists & inhibitors , Lovastatin/analogs & derivatives , Squalene/analogs & derivatives , Acetates/analysis , Acetates/metabolism , Animals , Apolipoproteins/blood , Apolipoproteins/drug effects , Benzophenones/chemical synthesis , Cholesterol/biosynthesis , Cholesterol/metabolism , Cricetinae , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Humans , Hydroxymethylglutaryl CoA Reductases/drug effects , Hydroxymethylglutaryl CoA Reductases/metabolism , Lanosterol/analysis , Lanosterol/metabolism , Lipoproteins/blood , Lipoproteins/drug effects , Liver/cytology , Liver/drug effects , Liver/enzymology , Liver/metabolism , Lovastatin/pharmacology , Myocardium/enzymology , Osmolar Concentration , Saimiri , Simvastatin , Squalene/administration & dosage , Squalene/analysis , Squalene/metabolism , Swine , Swine, Miniature , Triglycerides/blood , Triglycerides/metabolism , Tumor Cells, Cultured , Ubiquinone/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...