Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 608(7923): 528-533, 2022 08.
Article in English | MEDLINE | ID: mdl-35585230

ABSTRACT

Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are especially vulnerable remain unclear3-8. Here we analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated losses in biomass were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer to the upper end of the atmospheric vapour pressure deficit niches of species. A long-term increase in vapour pressure deficit was evident across the region, suggesting that thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.


Subject(s)
Atmosphere , Stress, Physiological , Trees , Tropical Climate , Water , Acclimatization , Atmosphere/chemistry , Australia , Biomass , Carbon/metabolism , Carbon Sequestration , Dehydration , Global Warming/statistics & numerical data , History, 20th Century , History, 21st Century , Humidity , Population Density , Risk , Time Factors , Trees/classification , Trees/growth & development , Trees/metabolism , Water/analysis , Water/metabolism
2.
Glob Chang Biol ; 28(4): 1414-1432, 2022 02.
Article in English | MEDLINE | ID: mdl-34741793

ABSTRACT

A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems. Furthermore, tree growth sensitivity to climate is likely to vary widely among species, and the ecological strategies underlying these differences remain poorly understood. Here, we utilize an exceptional dataset of 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how multiannual tree growth responds to both climate means and anomalies, and how species' functional traits mediate these growth responses to climate. We show that anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both climate means and anomalies. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests and that species traits can provide insights into understanding these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.


Subject(s)
Trees , Tropical Climate , Climate Change , Forests , Plant Leaves
3.
Ecol Evol ; 11(15): 10164-10177, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34367567

ABSTRACT

AIMS: Amidst the Campos de Altitude (Highland Grasslands) in the Brazilian Atlantic Forest, woody communities grow either clustered in tree islands or interspersed within the herbaceous matrix. The functional ecology, diversity, and biotic processes shaping these plant communities are largely unstudied. We characterized the functional assembly and diversity of these tropical montane woody communities and investigated how they fit within Grime's CSR (C-competitor, S-stress-tolerant, R-ruderal) scheme, what functional trade-offs they exhibit, and how traits and functional diversity vary in response to bamboo presence/absence. METHODS: To characterize the functional composition of the community, we sampled five leaf traits and wood density along transects covering the woody communities both inside tree islands and outside (i.e., isolated woody plants in the grasslands community). Then, we used Mann-Whitney test, t test, and variation partitioning to determine the effects of inside versus outside tree island and bamboo presence on community-weighted means, woody species diversity, and functional diversity. RESULTS: We found a general SC/S strategy with drought-related functional trade-offs. Woody plants in tree islands had more acquisitive traits than those within the grasslands. Trait variation was mostly taxonomically than spatially driven, and species composition varied between inside and outside tree islands. Leaf thickness, wood density, and foliar water uptake were unrelated to CSR strategies, suggesting independent trait dimensions and multiple drought-coping strategies within the predominant S strategy. Islands with bamboo presence showed lower Simpson diversity, lower functional dispersion, lower foliar water uptake, and greater leaf thickness than in tree islands without bamboo. CONCLUSIONS: The observed functional assembly hints toward large-scale environmental abiotic filtering shaping a stress-tolerant community strategy, and small-scale biotic interactions driving small-scale trait variation. We recommend experimental studies with fire, facilitation treatments, ecophysiological and recruitment traits to elucidate on future tree island expansion and community response to climate change.

SELECTION OF CITATIONS
SEARCH DETAIL
...