Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
medRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464285

ABSTRACT

Background: Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. Methods: Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. Results: We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. Conclusions: In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.

2.
Genet Epidemiol ; 45(7): 685-693, 2021 10.
Article in English | MEDLINE | ID: mdl-34159627

ABSTRACT

SARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Starting in October 2020, using the methodology of genome-wide association studies (GWAS), we looked at the association between whole-genome sequencing (WGS) data of the virus and COVID-19 mortality as a potential method of early identification of highly pathogenic strains to target for containment. Although continuously updating our analysis, in December 2020, we analyzed 7548 single-stranded SARS-CoV-2 genomes of COVID-19 patients in the GISAID database and associated variants with mortality using a logistic regression. In total, evaluating 29,891 sequenced loci of the viral genome for association with patient/host mortality, two loci, at 12,053 and 25,088 bp, achieved genome-wide significance (p values of 4.09e-09 and 4.41e-23, respectively), though only 25,088 bp remained significant in follow-up analyses. Our association findings were exclusively driven by the samples that were submitted from Brazil (p value of 4.90e-13 for 25,088 bp). The mutation frequency of 25,088 bp in the Brazilian samples on GISAID has rapidly increased from about 0.4 in October/December 2020 to 0.77 in March 2021. Although GWAS methodology is suitable for samples in which mutation frequencies varies between geographical regions, it cannot account for mutation frequencies that change rapidly overtime, rendering a GWAS follow-up analysis of the GISAID samples that have been submitted after December 2020 as invalid. The locus at 25,088 bp is located in the P.1 strain, which later (April 2021) became one of the distinguishing loci (precisely, substitution V1176F) of the Brazilian strain as defined by the Centers for Disease Control. Specifically, the mutations at 25,088 bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Since the mutations alter amino acid coding sequences, they potentially imposing structural changes that could enhance viral infectivity and symptom severity. Our analysis suggests that GWAS methodology can provide suitable analysis tools for the real-time detection of new more transmissible and pathogenic viral strains in databases such as GISAID, though new approaches are needed to accommodate rapidly changing mutation frequencies over time, in the presence of simultaneously changing case/control ratios. Improvements of the associated metadata/patient information in terms of quality and availability will also be important to fully utilize the potential of GWAS methodology in this field.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Brazil , Genome-Wide Association Study , Humans , Mutation , Phylogeny , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
3.
Nicotine Tob Res ; 21(6): 714-722, 2019 05 21.
Article in English | MEDLINE | ID: mdl-29767774

ABSTRACT

INTRODUCTION: Cigarette smoking is a major environmental risk factor for many diseases, including chronic obstructive pulmonary disease (COPD). There are shared genetic influences on cigarette smoking and COPD. Genetic risk factors for cigarette smoking in cohorts enriched for COPD are largely unknown. METHODS: We performed genome-wide association analyses for average cigarettes per day (CPD) across the Genetic Epidemiology of COPD (COPDGene) non-Hispanic white (NHW) (n = 6659) and African American (AA) (n = 3260), GenKOLS (the Genetics of Chronic Obstructive Lung Disease) (n = 1671), and ECLIPSE (the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) (n = 1942) cohorts. In addition, we performed exome array association analyses across the COPDGene NHW and AA cohorts. We considered analyses across the entire cohort and stratified by COPD case-control status. RESULTS: We identified genome-wide significant associations for CPD on chromosome 15q25 across all cohorts (lowest p = 1.78 × 10-15), except in the COPDGene AA cohort alone. Previously reported associations on chromosome 19 had suggestive and directionally consistent associations (RAB4, p = 1.95 × 10-6; CYP2A7, p = 7.50 × 10-5; CYP2B6, p = 4.04 × 10-4). When we stratified by COPD case-control status, single nucleotide polymorphisms on chromosome 15q25 were nominally associated with both NHW COPD cases (ß = 0.11, p = 5.58 × 10-4) and controls (ß = 0.12, p = 3.86 × 10-5) For the gene-based exome array association analysis of rare variants, there were no exome-wide significant associations. For these previously replicated associations, the most significant results were among COPDGene NHW subjects for CYP2A7 (p = 5.2 × 10-4). CONCLUSIONS: In a large genome-wide association study of both common variants and a gene-based association of rare coding variants in ever-smokers, we found genome-wide significant associations on chromosome 15q25 with CPD for common variants, but not for rare coding variants. These results were directionally consistent among COPD cases and controls. IMPLICATIONS: We examined both common and rare coding variants associated with CPD in a large population of heavy smokers with and without COPD of NHW and AA descent. We replicated genome-wide significant associations on chromosome 15q25 with CPD for common variants among NHW subjects, but not for rare variants. We demonstrated for the first time that common variants on chromosome 15q25 associated with CPD are similar among COPD cases and controls. Previously reported associations on chromosome 19 showed suggestive and directionally consistent associations among common variants (RAB4, CYP2A7, and CYP2B6) and for rare variants (CYP2A7) among COPDGene NHW subjects. Although the genetic effect sizes for these single nucleotide polymorphisms on chromosome 15q25 are modest, we show that this creates a substantial smoking burden over the lifetime of a smoker.


Subject(s)
Ethnicity/genetics , Genetic Markers , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/etiology , Smokers/statistics & numerical data , Smoking/genetics , Adult , Aged , Aged, 80 and over , Aryl Hydrocarbon Hydroxylases/genetics , Case-Control Studies , Cytochrome P-450 CYP2B6/genetics , Cytochrome P450 Family 2/genetics , Europe/epidemiology , Female , Genome-Wide Association Study/methods , Humans , Longitudinal Studies , Male , Middle Aged , Prevalence , Prognosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/adverse effects , Smoking/epidemiology , United States/epidemiology , rab4 GTP-Binding Proteins/genetics
4.
J Allergy Clin Immunol ; 120(1): 84-90, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17561245

ABSTRACT

BACKGROUND: It is unclear whether single nucleotide polymorphisms (SNPs) in the gene for IL-13 (IL13) influence asthma severity and/or asthma morbidity. OBJECTIVES: To examine the relation between IL13 SNPs and asthma-related phenotypes in 2 independent populations. METHODS: We used family-based methods to test for association between SNPs in IL13 and asthma-related phenotypes in Costa Rican children with asthma. We attempted to reproduce significant findings in white (non-Hispanic) children with asthma in the Childhood Asthma Management Program (CAMP). RESULTS: In Costa Rica and in CAMP, the A allele (Gln) of IL13 coding SNP (rs20541) was significantly associated with increased eosinophil count (P < .011 in both studies) and increased serum total IgE (P < .054 in both studies). The T allele of IL13 promoter SNP (rs1800925) was inversely associated with asthma exacerbations in Costa Rica (P = .069). Although this SNP (rs1800925) was not associated with asthma exacerbations among all white children in CAMP, it was associated with increased risk of asthma exacerbations among children on inhaled corticosteroids (P = .02). CONCLUSION: Polymorphisms in IL13 were significantly associated with serum total IgE and eosinophil count in 2 populations. IL13 polymorphisms may also be associated with asthma exacerbations, and this effect may be dependent on medication use. Our study is the first to report a potential negative interaction between a genetic polymorphism and response to inhaled corticosteroids. CLINICAL IMPLICATIONS: Polymorphisms in IL13 are associated with serum total IgE and eosinophil count and may be associated with asthma exacerbations.


Subject(s)
Asthma/genetics , Eosinophilia/genetics , Immunoglobulin E/blood , Interleukin-13/genetics , Polymorphism, Single Nucleotide , Asthma/diagnosis , Child , Costa Rica , Female , Humans , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL