Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int Immunopharmacol ; 128: 111557, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266451

ABSTRACT

BACKGROUND AND PURPOSE: Lung macrophages (LMs) are critically involved in respiratory diseases. The primary objective of the present study was to determine whether or not an adenosine analog (NECA) and prostaglandin E2 (PGE2) affected the interleukin (IL)-4- and IL-13-induced release of M2a chemokines (CCL13, CCL17, CCL18, and CCL22) by human LMs. EXPERIMENTAL APPROACH: Primary macrophages isolated from resected human lungs were incubated with NECA, PGE2, roflumilast, or vehicle and stimulated with IL-4 or IL-13 for 24 h. The levels of chemokines and PGE2 in the culture supernatants were measured using ELISAs and enzyme immunoassays. KEY RESULTS: Exposure to IL-4 (10 ng/mL) and IL-13 (50 ng/mL) was associated with greater M2a chemokine production but not PGE2 production. PGE2 (10 ng/mL) and NECA (10-6 M) induced the production of M2a chemokines to a lesser extent but significantly enhanced the IL-4/IL-13-induced production of these chemokines. At either a clinically relevant concentration (10-9 M) or at a concentration (10-7 M) that fully inhibited phosphodiesterase 4 (PDE4) activity, roflumilast did not increase the production of M2a chemokines and did not modulate their IL-13-induced production, regardless of the presence or absence of PGE2. CONCLUSIONS: NECA and PGE2 enhanced the IL-4/IL-13-induced production of M2a chemokines. The inhibition of PDE4 by roflumilast did not alter the production of these chemokines. These results contrast totally with the previously reported inhibitory effects of NECA, PGE2, and PDE4 inhibitors on the lipopolysaccharide-induced release of tumor necrosis factor alpha and M1 chemokines in human LMs.


Subject(s)
Adenosine , Aminopyridines , Benzamides , Dinoprostone , Humans , Dinoprostone/pharmacology , Adenosine/pharmacology , Interleukin-4/pharmacology , Interleukin-13/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Chemokines , Macrophages , Tumor Necrosis Factor-alpha/pharmacology , Chemokine CCL17 , Lung , Cells, Cultured , Cyclopropanes
2.
Front Immunol ; 14: 1142228, 2023.
Article in English | MEDLINE | ID: mdl-37465668

ABSTRACT

In response to the increasing demand for lung transplantation, ex vivo lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation. Functional enrichment analyses were performed upon integration of data sets generated at 4 h (clinical duration) and 10 h (prolonged duration) from two human lungs processed to EVLP. Pathways related to inflammation were predicted activated in epithelial and blood endothelial cells, in monocyte-derived macrophages and temporally at 4 h in alveolar macrophages. Pathways related to cytoskeleton signaling/organization were predicted reduced in most cell types mainly at 10 h. We identified a division of labor between cell types for the selected expression of cytokine and chemokine genes that varied according to time. Immune cells including CD4+ and CD8+ T cells, NK cells, mast cells and conventional dendritic cells displayed gene expression patterns indicating blunted activation, already at 4 h in several instances and further more at 10 h. Therefore despite inducing inflammatory responses, EVLP appears to dampen the activation of major lung immune cell types, what may be beneficial to the outcome of transplantation. Our results also support that therapeutics approaches aiming at reducing inflammation upon EVLP should target both the alveolar and vascular compartments.


Subject(s)
CD8-Positive T-Lymphocytes , Lung Transplantation , Humans , Perfusion/methods , Endothelial Cells , Lung Transplantation/methods , Lung/physiology , Inflammation
3.
Vet Res ; 54(1): 36, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069656

ABSTRACT

Bovine respiratory syncytial virus (BRSV) is a pathogenic pneumovirus and a major cause of acute respiratory infections in calves. Although different vaccines are available against BRSV, their efficiency remains limited, and no efficient and large-scale treatment exists. Here, we developed a new reverse genetics system for BRSV expressing the red fluorescent protein mCherry, based on a field strain isolated from a sick calf in Sweden. Although this recombinant fluorescent virus replicated slightly less efficiently compared to the wild type virus, both viruses were shown to be sensitive to the natural steroidal alkaloid cyclopamine, which was previously shown to inhibit human RSV replication. Our data thus point to the potential of this recombinant fluorescent BRSV as a powerful tool in preclinical drug discovery to enable high throughput compound screening.


Subject(s)
Cattle Diseases , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Bovine , Respiratory Syncytial Virus, Human , Animals , Cattle , Humans , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/veterinary , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Respiratory Syncytial Virus, Human/metabolism , Antibodies, Viral
4.
Nutrients ; 15(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678133

ABSTRACT

Microbiota studies have dramatically increased over these last two decades, and the repertoire of microorganisms with potential health benefits has been considerably enlarged. The development of next generation probiotics from new bacterial candidates is a long-term strategy that may be more efficient and rapid with discriminative in vitro tests. Streptococcus strains have received attention regarding their antimicrobial potential against pathogens of the upper and, more recently, the lower respiratory tracts. Pathogenic bacterial strains, such as non-typable Haemophilus influenzae (NTHi), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), are commonly associated with acute and chronic respiratory diseases, and it could be interesting to fight against pathogens with probiotics. In this study, we show that a Streptococcus mitis (S. mitis) EM-371 strain, isolated from the buccal cavity of a human newborn and previously selected for promising anti-inflammatory effects, displayed in vitro antimicrobial activity against NTHi, P. aeruginosa or S. aureus. However, the anti-pathogenic in vitro activity was not sufficient to predict an efficient protective effect in a preclinical model. Two weeks of treatment with S. mitis EM-371 did not protect against, and even exacerbated, NTHi lung infection.


Subject(s)
Pneumonia , Respiratory Tract Infections , Staphylococcal Infections , Infant, Newborn , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Staphylococcus aureus , Streptococcus mitis , Bacteria , Haemophilus influenzae , Anti-Bacterial Agents/pharmacology , Lung
5.
J Virol ; 95(22): e0091221, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34431698

ABSTRACT

Respiratory syncytial virus (RSV) is the main cause of acute respiratory infections in young children and also has a major impact on the elderly and immunocompromised people. In the absence of a vaccine or efficient treatment, a better understanding of RSV interactions with the host antiviral response during infection is needed. Previous studies revealed that cytoplasmic inclusion bodies (IBs), where viral replication and transcription occur, could play a major role in the control of innate immunity during infection by recruiting cellular proteins involved in the host antiviral response. We recently showed that the morphogenesis of IBs relies on a liquid-liquid-phase separation mechanism depending on the interaction between viral nucleoprotein (N) and phosphoprotein (P). These scaffold proteins are expected to play a central role in the recruitment of cellular proteins to IBs. Here, we performed a yeast two-hybrid screen using RSV N protein as bait and identified the cellular protein TAX1BP1 as a potential partner of this viral protein. This interaction was validated by pulldown and immunoprecipitation assays. We showed that TAX1BP1 suppression has only a limited impact on RSV infection in cell cultures. However, RSV replication is decreased in TAX1BP1-deficient (TAX1BP1 knockout [TAX1BP1KO]) mice, whereas the production of inflammatory and antiviral cytokines is enhanced. In vitro infection of wild-type or TAX1BP1KO alveolar macrophages confirmed that the innate immune response to RSV infection is enhanced in the absence of TAX1BP1. Altogether, our results suggest that RSV could hijack TAX1BP1 to restrain the host immune response during infection. IMPORTANCE Respiratory syncytial virus (RSV), which is the leading cause of lower respiratory tract illness in infants, remains a medical problem in the absence of a vaccine or efficient treatment. This virus is also recognized as a main pathogen in the elderly and immunocompromised people, and the occurrence of coinfections (with other respiratory viruses and bacteria) amplifies the risks of developing respiratory distress. In this context, a better understanding of the pathogenesis associated with viral respiratory infections, which depends on both viral replication and the host immune response, is needed. The present study reveals that the cellular protein TAX1BP1, which interacts with the RSV nucleoprotein N, participates in the control of the innate immune response during RSV infection, suggesting that the N-TAX1BP1 interaction represents a new target for the development of antivirals.


Subject(s)
Intracellular Signaling Peptides and Proteins/immunology , Neoplasm Proteins/immunology , Nucleocapsid Proteins/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Animals , Cell Line , Cricetinae , Humans , Immunity, Innate , Mice , Mice, Knockout , Virus Replication
6.
Front Vet Sci ; 8: 696525, 2021.
Article in English | MEDLINE | ID: mdl-34307535

ABSTRACT

Tuberculosis exacts a terrible toll on human and animal health. While Mycobacterium tuberculosis (Mtb) is restricted to humans, Mycobacterium bovis (Mb) is present in a large range of mammalian hosts. In cattle, bovine TB (bTB) is a noticeable disease responsible for important economic losses in developed countries and underestimated zoonosis in the developing world. Early interactions that take place between mycobacteria and the lung tissue early after aerosol infection govern the outcome of the disease. In cattle, these early steps remain poorly characterized. The precision-cut lung slice (PCLS) model preserves the structure and cell diversity of the lung. We developed this model in cattle in order to study the early lung response to mycobacterial infection. In situ imaging of PCLS infected with fluorescent Mb revealed bacilli in the alveolar compartment, in adjacent or inside alveolar macrophages, and in close contact with pneumocytes. We analyzed the global transcriptional lung inflammation signature following infection of PCLS with Mb and Mtb in two French beef breeds: Blonde d'Aquitaine and Charolaise. Whereas, lungs from the Blonde d'Aquitaine produced high levels of mediators of neutrophil and monocyte recruitment in response to infection, such signatures were not observed in the Charolaise in our study. In the Blonde d'Aquitaine lung, whereas the inflammatory response was highly induced by two Mb strains, AF2122 isolated from cattle in the UK and Mb3601 circulating in France, the response against two Mtb strains, H37Rv, the reference laboratory strain, and BTB1558, isolated from zebu in Ethiopia, was very low. Strikingly, the type I interferon pathway was only induced by Mb but not Mtb strains, indicating that this pathway may be involved in mycobacterial virulence and host tropism. Hence, the PCLS model in cattle is a valuable tool to deepen our understanding of early interactions between lung host cells and mycobacteria. It revealed striking differences between cattle breeds and mycobacterial strains. This model could help in deciphering biomarkers of resistance vs. susceptibility to bTB in cattle as such information is still critically needed for bovine genetic selection programs and would greatly help the global effort to eradicate bTB.

7.
Front Immunol ; 12: 683902, 2021.
Article in English | MEDLINE | ID: mdl-34163482

ABSTRACT

Respiratory syncytial virus (RSV) is a public health concern that causes acute lower respiratory tract infection. So far, no vaccine candidate under development has reached the market and the only licensed product to prevent RSV infection in at-risk infants and young children is a monoclonal antibody (Synagis®). Polyclonal human anti-RSV hyper-immune immunoglobulins (Igs) have also been used but were superseded by Synagis® owing to their low titer and large infused volume. Here we report a new drug class of immunoglobulins, derived from human non hyper-immune plasma that was generated by an innovative bioprocess, called Ig cracking, combining expertises in plasma-derived products and affinity chromatography. By using the RSV fusion protein (F protein) as ligand, the Ig cracking process provided a purified and concentrated product, designated hyper-enriched anti-RSV IgG, composed of at least 15-20% target-specific-antibodies from normal plasma. These anti-RSV Ig displayed a strong in vitro neutralization effect on RSV replication. Moreover, we described a novel prophylactic strategy based on local nasal administration of this unique hyper-enriched anti-RSV IgG solution using a mouse model of infection with bioluminescent RSV. Our results demonstrated that very low doses of hyper-enriched anti-RSV IgG can be administered locally to ensure rapid and efficient inhibition of virus infection. Thus, the general hyper-enriched Ig concept appeared a promising approach and might provide solutions to prevent and treat other infectious diseases. IMPORTANCE: Respiratory Syncytial Virus (RSV) is the major cause of acute lower respiratory infections in children, and is also recognized as a cause of morbidity in the elderly. There are still no vaccines and no efficient antiviral therapy against this virus. Here, we described an approach of passive immunization with a new class of hyper-enriched anti-RSV immunoglobulins (Ig) manufactured from human normal plasma. This new class of immunoglobulin plasma derived product is generated by an innovative bioprocess, called Ig cracking, which requires a combination of expertise in both plasma derived products and affinity chromatography. The strong efficacy in a small volume of these hyper-enriched anti-RSV IgG to inhibit the viral infection was demonstrated using a mouse model. This new class of immunoglobulin plasma-derived products could be applied to other pathogens to address specific therapeutic needs in the field of infectious diseases or even pandemics, such as COVID-19.


Subject(s)
Antibodies, Viral/administration & dosage , Immunization, Passive , Immunoglobulin G/administration & dosage , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/immunology , Administration, Intranasal , Animals , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Disease Models, Animal , Humans , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Lung/drug effects , Lung/virology , Neutralization Tests , Respiratory Syncytial Virus Infections/virology , Turbinates/drug effects , Turbinates/virology , Viral Fusion Proteins/immunology , Virus Replication/drug effects
8.
Mucosal Immunol ; 14(4): 949-962, 2021 07.
Article in English | MEDLINE | ID: mdl-33846534

ABSTRACT

Respiratory Syncytial Virus (RSV) is the major cause of lower respiratory tract infection in infants, in whom, the sensing of RSV by innate immune receptors and its regulation are still poorly described. However, the severe bronchiolitis following RSV infection in neonates has been associated with a defect in type I interferons (IFN-I) production, a cytokine produced mainly by alveolar macrophages (AMs) upon RSV infection in adults. In the present study, neonatal C57BL/6 AMs mobilized very weakly the IFN-I pathway upon RSV infection in vitro and failed to restrain virus replication. However, IFN-I productions by neonatal AMs were substantially increased by the deletion of Insulin-Responsive AminoPeptidase (IRAP), a protein previously involved in the regulation of IFN-I production by dendritic cells. Moreover, neonatal IRAPKO AMs showed a higher expression of IFN-stimulated genes than their wild-type C57BL/6 counterpart. Interestingly, depletion of IRAP did not affect adult AM responses. Finally, we demonstrated that newborn IRAPKO mice infected with RSV had more IFN-I in their lungs and eliminated the virus more efficiently than WT neonates. Taken together, early-life susceptibility to RSV infection may be related to an original age-dependent suppressive function of IRAP on the IFN-I driven-antiviral responses in neonatal AMs.


Subject(s)
Cystinyl Aminopeptidase/metabolism , Interferon Type I/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Viruses , Animals , Animals, Newborn , Disease Models, Animal , Host-Pathogen Interactions/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiratory Syncytial Virus Infections/virology , Signal Transduction , Toll-Like Receptors/metabolism , Virus Replication
9.
FASEB J ; 35(4): e21348, 2021 04.
Article in English | MEDLINE | ID: mdl-33715218

ABSTRACT

The gut microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the gut and/or lung microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota in general can modulate the reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific-pathogen-free (SPF) and germ-free (GF) mice. Thus, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice after intranasal instillation to lipopolysaccharide (LPS), a component of Gram-negative bacteria. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to the environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.


Subject(s)
Gastrointestinal Microbiome/physiology , Germ-Free Life , Lipopolysaccharides/toxicity , Lung/immunology , Lung/metabolism , Toll-Like Receptor 4/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Inflammation/metabolism , Lung Diseases/chemically induced , Male , Mice , Specific Pathogen-Free Organisms , Tissue Culture Techniques , Toll-Like Receptor 4/genetics
10.
Viruses ; 13(2)2021 01 28.
Article in English | MEDLINE | ID: mdl-33525646

ABSTRACT

BACKGROUND: Respiratory Syncytial Virus (RSV) is the major cause of severe acute respiratory tract illness in young children worldwide and a main pathogen for the elderly and immune-compromised people. In the absence of vaccines or effective treatments, a better characterization of the pathogenesis of RSV infection is required. To date, the pathophysiology of the disease and its diagnosis has mostly relied on chest X-ray and genome detection in nasopharyngeal swabs. The development of new imaging approaches is instrumental to further the description of RSV spread, virus-host interactions and related acute respiratory disease, at the level of the entire lung. METHODS: By combining tissue clearing, 3D microscopy and image processing, we developed a novel visualization tool of RSV infection in undissected mouse lungs. RESULTS: Whole tissue analysis allowed the identification of infected cell subtypes, based on both morphological traits and position within the cellular network. Furthermore, 3D imaging was also valuable to detect the cytoplasmic viral factories, also called inclusion bodies, a hallmark of RSV infection. CONCLUSIONS: Whole lung clearing and 3D deep imaging represents an unprecedented visualization method of infected lungs to allow insight into RSV pathophysiology and improve the 2D histology analyses.


Subject(s)
Imaging, Three-Dimensional , Lung/pathology , Lung/virology , Respiratory Syncytial Virus, Human/physiology , Animals , Disease Models, Animal , Epithelial Cells/virology , Inclusion Bodies, Viral/pathology , Mice , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Virus Replication
11.
Front Mol Biosci ; 7: 583556, 2020.
Article in English | MEDLINE | ID: mdl-33195428

ABSTRACT

Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.

12.
Viruses ; 12(8)2020 07 29.
Article in English | MEDLINE | ID: mdl-32751234

ABSTRACT

Respiratory syncytial virus (RSV) is the prevalent pathogen of lower respiratory tract infections in children. The presence of neonatal regulatory B lymphocytes (nBreg) has been associated with a poor control of RSV infection in human newborns and with bronchiolitis severity. So far, little is known about how nBreg may contribute to neonatal immunopathology to RSV. We tracked nBreg in neonatal BALB/c mice and we investigated their impact on lung innate immunity, especially their crosstalk with alveolar macrophages (AMs) upon RSV infection. We showed that the colonization by nBreg during the first week of life is a hallmark of neonatal lung whereas this population is almost absent in adult lung. This particular period of age when nBreg are abundant corresponds to the same period when RSV replication in lungs fails to generate a type-I interferons (IFN-I) response and is not contained. When neonatal AMs are exposed to RSV in vitro, they produce IFN-I that in turn enhances IL-10 production by nBreg. IL-10 reciprocally can decrease IFN-I secretion by AMs. Thus, our work identified nBreg as an important component of neonatal lungs and pointed out new immunoregulatory interactions with AMs in the context of RSV infection.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Interleukin-10/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Respiratory Syncytial Virus Infections/immunology , Turbinates/immunology , Animals , Animals, Newborn , B-Lymphocyte Subsets/immunology , Cells, Cultured , Immunity, Innate , Interferon Type I/biosynthesis , Interferon Type I/immunology , Interleukin-10/metabolism , Lung/virology , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/physiology , Spleen/immunology , Virus Replication
13.
Science ; 368(6492)2020 05 15.
Article in English | MEDLINE | ID: mdl-32409444

ABSTRACT

De novo protein design has been successful in expanding the natural protein repertoire. However, most de novo proteins lack biological function, presenting a major methodological challenge. In vaccinology, the induction of precise antibody responses remains a cornerstone for next-generation vaccines. Here, we present a protein design algorithm called TopoBuilder, with which we engineered epitope-focused immunogens displaying complex structural motifs. In both mice and nonhuman primates, cocktails of three de novo-designed immunogens induced robust neutralizing responses against the respiratory syncytial virus. Furthermore, the immunogens refocused preexisting antibody responses toward defined neutralization epitopes. Overall, our design approach opens the possibility of targeting specific epitopes for the development of vaccines and therapeutic antibodies and, more generally, will be applicable to the design of de novo proteins displaying complex functional motifs.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Computational Biology/methods , Immunodominant Epitopes/chemistry , Protein Engineering/methods , Recombinant Fusion Proteins/chemistry , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus, Human/immunology , Amino Acid Motifs , Humans , Immunodominant Epitopes/immunology , Protein Conformation , Recombinant Fusion Proteins/immunology , Respiratory Syncytial Virus Vaccines/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology
14.
J Neurochem ; 155(2): 137-153, 2020 09.
Article in English | MEDLINE | ID: mdl-31811775

ABSTRACT

The olfactory mucosa, where the first step of odor detection occurs, is a privileged pathway for environmental toxicants and pathogens toward the central nervous system. Indeed, some pathogens can infect olfactory sensory neurons including their axons projecting to the olfactory bulb allowing them to bypass the blood-brain barrier and reach the central nervous system (CNS) through the so-called olfactory pathway. The respiratory syncytial virus (RSV) is a major respiratory tract pathogen but there is growing evidence that RSV may lead to CNS impairments. However, the mechanisms involved in RSV entering into the CNS have been poorly described. In this study, we wanted to explore the capacity of RSV to reach the CNS via the olfactory pathway and to better characterize RSV cellular tropism in the nasal cavity. We first explored the distribution of RSV infectious sites in the nasal cavity by in vivo bioluminescence imaging and a tissue clearing protocol combined with deep-tissue imaging and 3D image analyses. This whole tissue characterization was confirmed with immunohistochemistry and molecular biology approaches. Together, our results provide a novel 3D atlas of mouse nasal cavity anatomy and show that RSV can infect olfactory sensory neurons giving access to the central nervous system by entering the olfactory bulb. Cover Image for this issue: doi: 10.1111/jnc.14765.


Subject(s)
Olfactory Mucosa/innervation , Olfactory Mucosa/virology , Olfactory Receptor Neurons/virology , Respiratory Syncytial Viruses , Animals , Central Nervous System/diagnostic imaging , Central Nervous System/virology , Central Nervous System Diseases/diagnostic imaging , Central Nervous System Diseases/virology , Female , Head/anatomy & histology , Imaging, Three-Dimensional , Mice , Mice, Inbred BALB C , Nasal Mucosa/virology , Olfactory Bulb/virology , Olfactory Mucosa/diagnostic imaging , RNA, Viral/isolation & purification , Tropism , Virus Replication
15.
PLoS Biol ; 17(2): e3000164, 2019 02.
Article in English | MEDLINE | ID: mdl-30789898

ABSTRACT

Throughout the last several decades, vaccination has been key to prevent and eradicate infectious diseases. However, many pathogens (e.g., respiratory syncytial virus [RSV], influenza, dengue, and others) have resisted vaccine development efforts, largely because of the failure to induce potent antibody responses targeting conserved epitopes. Deep profiling of human B cells often reveals potent neutralizing antibodies that emerge from natural infection, but these specificities are generally subdominant (i.e., are present in low titers). A major challenge for next-generation vaccines is to overcome established immunodominance hierarchies and focus antibody responses on crucial neutralization epitopes. Here, we show that a computationally designed epitope-focused immunogen presenting a single RSV neutralization epitope elicits superior epitope-specific responses compared to the viral fusion protein. In addition, the epitope-focused immunogen efficiently boosts antibodies targeting the palivizumab epitope, resulting in enhanced neutralization. Overall, we show that epitope-focused immunogens can boost subdominant neutralizing antibody responses in vivo and reshape established antibody hierarchies.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Epitopes/chemistry , Receptors, Antigen, B-Cell/immunology , Recombinant Fusion Proteins/chemistry , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/chemistry , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Cloning, Molecular , Computer-Aided Design , Epitopes/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Immunization/methods , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Palivizumab/chemistry , Palivizumab/immunology , Receptors, Antigen, B-Cell/chemistry , Receptors, Antigen, B-Cell/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/biosynthesis , Respiratory Syncytial Virus Vaccines/genetics , Structural Homology, Protein , Viral Fusion Proteins/administration & dosage , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
17.
Front Physiol ; 9: 1168, 2018.
Article in English | MEDLINE | ID: mdl-30246806

ABSTRACT

Improvements in our knowledge of the gut microbiota have broadened our vision of the microbes associated with the intestine. These microbes are essential actors and protectors of digestive and extra-digestive health and, by extension, crucial for human physiology. Similar reconsiderations are currently underway concerning the endogenous microbes of the lungs, with a shift in focus away from their involvement in infections toward a role in physiology. The discovery of the lung microbiota was delayed by the long-held view that the lungs of healthy individuals were sterile and by sampling difficulties. The lung microbiota has a low density, and the maintenance of small numbers of bacteria seems to be a critical determinant of good health. This review aims to highlight how knowledge about the lung microbiota can change our conception of lung physiology and respiratory health. We provide support for this point of view with knowledge acquired about the gut microbiota and intestinal physiology. We describe the main characteristics of the lung microbiota and its functional impact on lung physiology, particularly in healthy individuals, after birth, but also in asthma. We describe some of the physiological features of the respiratory tract potentially favoring the installation of a dysbiotic microbiota. The gut microbiota feeds and matures the intestinal epithelium and is involved in immunity, when the principal role of the lung microbiota seems to be the orientation and balance of aspects of immune and epithelial responsiveness. This implies that the local and remote effects of bacterial communities are likely to be determinant in many respiratory diseases caused by viruses, allergens or genetic deficiency. Finally, we discuss the reciprocal connections between the gut and lungs that render these two compartments inseparable.

18.
Sci Rep ; 8(1): 10172, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29977043

ABSTRACT

Lung inflammation is frequently involved in respiratory conditions and it is strongly controlled by mononuclear phagocytes (MNP). We previously studied porcine lung MNP and described a new population of cells presenting all the features of alveolar macrophages (AM) except for their parenchymal location, that we named AM-like cells. Herein we showed that AM-like cells are macrophages phagocytosing blood-borne particles, in agreement with a pulmonary intravascular macrophages (PIM) identity. PIM have been described microscopically long time ago in species from the Laurasiatheria superorder such as bovine, swine, cats or cetaceans. We observed that PIM were more inflammatory than AM upon infection with the porcine reproductive and respiratory syndrome virus (PRRSV), a major swine pathogen. Moreover, whereas PRRSV was thought to mainly target AM, we observed that PIM were a major producer of virus. The PIM infection was more correlated with viremia in vivo than AM infection. Finally like AM, PIM-expressed genes were characteristic of an embryonic monocyte-derived macrophage population, whose turnover is independent of bone marrow-derived hematopoietic precursors. This last observation raised the interesting possibility that AM and PIM originate from the same lung precursor.


Subject(s)
Macrophages, Alveolar/immunology , Phagocytosis , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Viremia/immunology , Animals , Cells, Cultured , Female , Lung/cytology , Lung/immunology , Lung/virology , Macrophages, Alveolar/virology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/pathogenicity , Primary Cell Culture , Specific Pathogen-Free Organisms , Sus scrofa , Swine , Swine, Miniature , Viremia/virology
19.
J Immunol Res ; 2017: 8734504, 2017.
Article in English | MEDLINE | ID: mdl-29250560

ABSTRACT

Human respiratory syncytial virus (RSV) is a common and highly contagious viral agent responsible for acute lower respiratory infection in infants. This pathology characterized by mucus hypersecretion and a disturbed T cell immune response is one of the major causes of infant hospitalization for severe bronchiolitis. Although different risk factors are associated with acute RSV bronchiolitis, the immunological factors contributing to the susceptibility of RSV infection in infants are not clearly elucidated. Epidemiological studies have established that the age at initial infection plays a central role in the severity of the disease. Thus, neonatal susceptibility is intrinsically linked to the immunological characteristics of the young pulmonary mucosa. Early life is a critical period for the lung development with the first expositions to external environmental stimuli and microbiota colonization. Furthermore, neonates display a lung immune system that profoundly differs to those from adults, with the predominance of type 2 immune cells. In this review, we discuss the latest information about the lung immune environment in the early period of life at a steady state and upon RSV infection and how we can modulate neonatal susceptibility to RSV infection.


Subject(s)
Lung/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/physiology , Cellular Microenvironment , Disease Susceptibility , Humans , Immune Tolerance , Immunity, Innate , Immunomodulation , Infant, Newborn , Lung/virology
20.
Nat Immunol ; 18(5): 509-518, 2017 05.
Article in English | MEDLINE | ID: mdl-28319098

ABSTRACT

The retention of intracellular Toll-like receptors (TLRs) in the endoplasmic reticulum prevents their activation under basal conditions. TLR9 is activated by sensing ligands in specific endosomal-lysosomal compartments. Here we identified IRAP+ endosomes as major cellular compartments for the early steps of TLR9 activation in dendritic cells (DCs). Both TLR9 and its ligand, the dinucleotide CpG, were present as cargo in IRAP+ endosomes. In the absence of the aminopeptidase IRAP, the trafficking of CpG and TLR9 to lysosomes and signaling via TLR9 were enhanced in DCs and in mice following bacterial infection. IRAP stabilized CpG-containing endosomes by interacting with the actin-nucleation factor FHOD4, which slowed the trafficking of TLR9 toward lysosomes. Thus, endosomal retention of TLR9 via the interaction of IRAP with the actin cytoskeleton is a mechanism that prevents hyper-activation of TLR9 in DCs.


Subject(s)
Cystinyl Aminopeptidase/metabolism , Cytoskeleton/metabolism , Dendritic Cells/physiology , Endosomes/metabolism , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Toll-Like Receptor 9/metabolism , Animals , Cells, Cultured , CpG Islands/genetics , Cystinyl Aminopeptidase/genetics , Dendritic Cells/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Oligodeoxyribonucleotides/immunology , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...