Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 7(2): 273-80, 2012 Feb 06.
Article in English | MEDLINE | ID: mdl-22174080

ABSTRACT

PH-797804 ((aS)-3-{3-bromo-4-[(2,4-difluorobenzyl)oxy]-6-methyl-2-oxopyridin-1(2H)-yl}-N,4-dimethylbenzamde) is a diarylpyridinone inhibitor of p38 mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. Due to steric constraints imposed by the pyridinone carbonyl group and the 6- and 6'-methyl substituents of PH-797804, rotation around the connecting bond of the pyridinone and the N-phenyl ring is restricted. Density functional theory predicts a remarkably high rotational energy barrier of >30 kcal mol(-1), corresponding to a half-life of more than one hundred years at room temperature. This gives rise to discrete conformational spaces for the N-phenylpyridinone group, and as a result, two atropic isomers that do not interconvert under ambient conditions. Molecular modeling studies predict that the two isomers should differ in their binding affinity for p38α kinase; whereas the atropic S (aS) isomer binds favorably, the opposite aR isomer incurs significant steric interference with p38α kinase. The two isomers were subsequently identified and separated by chiral chromatography. IC50 values from p38α kinase assays confirm that one atropisomer is >100-fold more potent than the other. It was ultimately confirmed by small-molecule X-ray diffraction that the more potent atropisomer, PH-797804, is the aS isomer of the racemic pair. Extensive pharmacological characterization supports that PH-797804 carries most activity both in vitro and in vivo, and it has a stability profile compatible with oral formulation and delivery options.


Subject(s)
Benzamides/chemistry , Protein Kinase Inhibitors/chemistry , Pyridones/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Arthritis/drug therapy , Benzamides/pharmacology , Benzamides/therapeutic use , Computer Simulation , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Female , Lipopolysaccharides/toxicity , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Tertiary , Pyridones/pharmacology , Pyridones/therapeutic use , Quantum Theory , Rats , Receptors, Cell Surface , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Bioorg Med Chem Lett ; 21(13): 4059-65, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21640588

ABSTRACT

A series of N-aryl pyridinone inhibitors of p38 mitogen activated protein (MAP) kinase were designed and prepared based on the screening hit SC-25028 (1) and structural comparisons to VX-745 (5). The focus of the investigation targeted the dependence of potency and metabolic stability on the benzyloxy connectivity, the role of the C-6 position and the substitution pattern on the N-phenyl ring. Further optimization produced the highly selective and potent pyridinones 2 and 3. These inhibitors exhibited activity in both acute and chronic models of inflammation.


Subject(s)
Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Disease Models, Animal , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Male , Microsomes, Liver/enzymology , Molecular Structure , Pyridazines/chemistry , Pyridazines/pharmacology , Pyridones/chemistry , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley
3.
Bioorg Med Chem Lett ; 21(13): 4066-71, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21641211

ABSTRACT

The synthesis and SAR studies of a novel N-aryl pyridinone class of p38 kinase inhibitors are described. Systematic structural modifications to the HTS lead, 5, led to the identification of (-)-4a as a clinical candidate for the treatment of inflammatory diseases. Additionally, the chiral synthesis and properties of (-)-4a are described.


Subject(s)
Benzamides/chemical synthesis , Benzamides/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrones/chemical synthesis , Pyrones/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Benzamides/chemistry , Disease Models, Animal , Dogs , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Macaca fascicularis , Male , Molecular Structure , Pyridones , Pyrones/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/chemistry , p38 Mitogen-Activated Protein Kinases/pharmacology
4.
Bioorg Med Chem Lett ; 21(13): 3856-60, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21620699

ABSTRACT

A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-α in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.


Subject(s)
Protein Kinase Inhibitors/therapeutic use , Pyrimidinones/therapeutic use , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Administration, Oral , Animals , Arthritis/drug therapy , Arthritis, Experimental , Caco-2 Cells , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Male , Models, Molecular , Protein Kinase Inhibitors/chemistry , Pyrimidinones/chemistry , Rats , Rats, Inbred Lew , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 19(20): 5851-6, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19751974

ABSTRACT

The identification and evolution of a series of potent and selective p38 inhibitors is described. p38 inhibitors based on a N-benzyl pyridinone high-throughput screening hit were prepared and their SAR explored. Their design was guided by ligand bound co-crystals of p38alpha. These efforts resulted in the identification of 12r and 19 as orally active inhibitors of p38 with significant efficacy in both acute and chronic models of inflammation.


Subject(s)
Anti-Inflammatory Agents/chemistry , Protein Kinase Inhibitors/chemistry , Pyridones/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Administration, Oral , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Discovery , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Microsomes, Liver/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyridones/chemical synthesis , Pyridones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Biochemistry ; 48(27): 6402-11, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19496616

ABSTRACT

PH-797804 is a diarylpyridinone inhibitor of p38alpha mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38alpha inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38alpha kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180 degrees rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38alpha kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38alpha kinase inhibitors.


Subject(s)
Benzamides/pharmacology , Computational Biology , Protein Kinase Inhibitors/pharmacology , Pyrones/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Benzamides/chemistry , Crystallography, X-Ray , Humans , Hydrogen Bonding , Models, Molecular , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/chemistry , Pyridones , Pyrones/chemistry , Substrate Specificity , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Bioorg Med Chem ; 15(11): 3783-800, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17399986

ABSTRACT

The integrin alpha(v)beta(3), vitronectin receptor, is expressed in a number of cell types and has been shown to mediate adhesion of osteoclasts to bone matrix, vascular smooth muscle cell migration, and angiogenesis. We recently disclosed the discovery of a tripeptide Arg-Gly-Asp (RGD) mimic, which has been shown to be a potent inhibitor of the integrin alpha(v)beta(3) and has excellent anti-angiogenic properties including its suppression of tumor growth in animal models. In other investigations involving RGD mimics, only compounds containing the S-isomers of the beta-amino acids have been shown to be potent. We were surprised to find the potencies of analogs containing enantiomerically pure S-isomers of beta-amino acids which were only marginally better than the corresponding racemic mixtures. We therefore synthesized RGD mimics containing R-isomers of beta-amino acids and found them to be relatively potent inhibitors of alpha(v)beta(3). One of the compounds was examined in tumor models in mice and has been shown to significantly reduce the rate of growth and the size of tumors.


Subject(s)
Amino Acids/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Integrin alphaVbeta3/antagonists & inhibitors , Molecular Mimicry , Oligopeptides/chemistry , Oligopeptides/pharmacology , Amino Acids/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Colonic Neoplasms , Hypercalcemia/chemically induced , Isomerism , Melanoma , Mice , Mice, Inbred Strains , Oligopeptides/pharmacokinetics , Skin Neoplasms , Xenograft Model Antitumor Assays
8.
Microbiology (Reading) ; 143 ( Pt 2): 357-366, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9043113

ABSTRACT

Myristoyl-CoA: protein N-myristoyltransferase (Nmt) catalyses the covalent attachment of myristate to the N-terminal glycine of a small subset of cellular proteins produced during vegetative growth of Candida albicans. nmt447D is a mutant NMT allele encoding an enzyme with a Gly447-->ASP substitution and reduced affinity for myristoyl-CoA. Among isogenic NMT/NMT, NMT/ delta nmt and nmt delta/nmt447D strains, only nmt delta/nmt447D cells require myristate for growth on yeast/peptone/dextrose media (YPD) at 24 or 37 degrees C. When switched from YPD/myristate to YPD alone, 60% of the organisms die with 4 h. Antibodies raised against the C-terminal eight residues of Saccharomyces cerevisiae Arf1p were used to probe Western blots of total cellular proteins prepared from these isogenic Candida strains. N-Myristoylation of C. albicans ADP-ribosylation factor (Arf) produced a change in its electrophoretic mobility during SDS-PAGE: the myristoylated species migrated more rapidly than the nonmyristoylated species. In an NMT/nmt delta strain, 100% of the Arf is N-myristoylated based on this mobility shift assay. When exponentially growing nmt delta/nmt447D cells were incubated at 24 degrees C in YPD/myristate, < 25% cellular Arf was nonmyristoylated. In contrast, 2 or 4 h after withdrawal of myristate, > or = 50% of total cellular Arf was nonmyristoylated. This finding suggests that > or = 50% reduction in Arf N-myristoylation is a biochemical marker of a growth-arrested cell. A similar conclusion was made after assaying isogenic S. cerevisiae strains containing various combinations of NMT1, nmt1-451D, ARF1, arf1 delta, ARF2 and arf2 delta alleles and grown at 24-37 degrees C on YPD of YPD/myristate. Peptidomimetic inhibitors of C. albicans Nmt were synthesized based on the N-terminal sequence of an S. cerevisiae Aft. SC-59383 has an IC50 of 1.45 +/- 0.08 microM for purified C. albicans Nmt and is 560-fold selective for the fungal compared to human N-myristoyltransferase. It had an EC50 of 51 +/- 17 and 67 +/- 6 microM, 24 and 48 h after a single administration of the drug to cultures of C. albicans. The Arf gel mobility shift assay indicated that a single dose of 200 microM produced a < 50% reduction in Arf N-myristoylation after 4 h, which is consistent with the fungistatic, but not fungicidal, activity. The effect on Nmt was specific: an enantiomer, SC-59840, had no inhibitory effect on purified C. albicans Nmt (IC50 > 1,000 microM), and 200 microM of the compound produced no detectable reduction in Arf N-myristoylation in vivo. SC-58272, which is related to SC-59383, was a more potent inhibitor in vitro (IC50 0.056 +/- 0.01 microM), but had no growth inhibitory activity and did not produce any detectable reduction in Arf N-myristoylation. These findings highlight the utility of the Arf protein gel mobility shift assay for demonstrating the mechanism-based antifungal activity of SC-59383, a selective inhibitor of C. albicans Nmt.


Subject(s)
Acyltransferases/antagonists & inhibitors , Antifungal Agents/pharmacology , Candida albicans/drug effects , GTP-Binding Proteins/metabolism , Protein Processing, Post-Translational/drug effects , ADP-Ribosylation Factor 1 , ADP-Ribosylation Factors , Acyltransferases/genetics , Candida albicans/genetics , Candida albicans/metabolism , Evaluation Studies as Topic , Imidazoles/pharmacology , Microbial Sensitivity Tests , Molecular Mimicry , Oligopeptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...