Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38659932

ABSTRACT

E3-ubiquitin ligases (E3s) are main components of the ubiquitin-proteasome system (UPS), as they determine substrate specificity in response to internal and external cues to regulate protein homeostasis. However, the regulation of membrane protein ubiquitination by E3s within distinct cell membrane compartments or organelles is not well understood. We show that FBXO10, the interchangeable component of the SKP1/CUL1/F-box ubiquitin ligase complex (SCF-E3), undergoes lipid-modification with geranylgeranyl isoprenoid at Cysteine953 (C953), facilitating its dynamic trafficking to the outer mitochondrial membrane (OMM). FBXO10 polypeptide does not contain a canonical mitochondrial targeting sequence (MTS); instead, its geranylgeranylation at C953 and the interaction with two cytosolic factors, PDE6δ (a prenyl group-binding protein), and HSP90 (a mitochondrial chaperone) orchestrate specific OMM targeting of prenyl-FBXO10 across diverse membrane compartments. The geranylgeranylation-deficient FBXO10(C953S) mutant redistributes away from the OMM, leading to impaired mitochondrial ATP production, decreased mitochondrial membrane potential, and increased mitochondrial fragmentation. Phosphoglycerate mutase 5 (PGAM5) was identified as a potential substrate of FBXO10 at the OMM using comparative quantitative mass spectrometry analyses of enriched mitochondria (LFQ-MS/MS), leveraging the redistribution of FBXO10(C953S). FBXO10, but not FBXO10(C953S), promoted polyubiquitylation and degradation of PGAM5. Examination of the role of this pathway in a physiological context revealed that the loss of FBXO10 or expression of prenylation-deficient-FBXO10(C953S) inhibited PGAM5 degradation, disrupted mitochondrial homeostasis, and impaired myogenic differentiation of human iPSCs and murine myoblasts. Our studies identify a mechanism for selective E3-ligase mediated regulation of mitochondrial membrane proteostasis and metabolic health, potentially amenable to therapeutic intervention.

2.
Sci Adv ; 9(41): eadh1134, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37831778

ABSTRACT

Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.


Subject(s)
Endosomes , Vacuolar Proton-Translocating ATPases , Autophagy , Cell Membrane/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Humans
3.
J Virol ; 97(10): e0050723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37768083

ABSTRACT

IMPORTANCE: Generation of virus-host protein-protein interactions (PPIs) maps may provide clues to uncover SARS-CoV-2-hijacked cellular processes. However, these PPIs maps were created by expressing each viral protein singularly, which does not reflect the life situation in which certain viral proteins synergistically interact with host proteins. Our results reveal the host-viral protein-protein interactome of SARS-CoV-2 NSP3, NSP4, and NSP6 expressed individually or in combination. Furthermore, REEP5/TRAM1 complex interacts with NSP3 at ROs and promotes viral replication. The significance of our research is identifying virus-host interactions that may be targeted for therapeutic intervention.


Subject(s)
Coronavirus Papain-Like Proteases , Host Microbial Interactions , Membrane Glycoproteins , Membrane Proteins , Membrane Transport Proteins , SARS-CoV-2 , Virus Replication , Humans , COVID-19/virology , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Protein Binding , Protein Interaction Maps , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Coronavirus Papain-Like Proteases/metabolism
4.
Cancer Discov ; 12(5): 1314-1335, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35262173

ABSTRACT

Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma. Our unbiased proteomics analysis of melanoma short-term cultures revealed that proteins implicated in neurodegenerative pathologies are differentially expressed in melanoma cells explanted from brain metastases compared with those derived from extracranial metastases. We showed that melanoma cells require amyloid beta (Aß) for growth and survival in the brain parenchyma. Melanoma-secreted Aß activates surrounding astrocytes to a prometastatic, anti-inflammatory phenotype and prevents phagocytosis of melanoma by microglia. Finally, we demonstrate that pharmacologic inhibition of Aß decreases brain metastatic burden. SIGNIFICANCE: Our results reveal a novel mechanistic connection between brain metastasis and Alzheimer's disease, two previously unrelated pathologies; establish Aß as a promising therapeutic target for brain metastasis; and demonstrate suppression of neuroinflammation as a critical feature of metastatic adaptation to the brain parenchyma. This article is highlighted in the In This Issue feature, p. 1171.


Subject(s)
Brain Neoplasms , Melanoma , Amyloid beta-Peptides/therapeutic use , Astrocytes/metabolism , Brain Neoplasms/genetics , Humans , Melanoma/drug therapy , Neoplasm Metastasis , Neuroinflammatory Diseases
5.
Cancer Discov ; 12(4): 1022-1045, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34911733

ABSTRACT

Resistance to targeted therapies is an important clinical problem in HER2-positive (HER2+) breast cancer. "Drug-tolerant persisters" (DTP), a subpopulation of cancer cells that survive via reversible, nongenetic mechanisms, are implicated in resistance to tyrosine kinase inhibitors (TKI) in other malignancies, but DTPs following HER2 TKI exposure have not been well characterized. We found that HER2 TKIs evoke DTPs with a luminal-like or a mesenchymal-like transcriptome. Lentiviral barcoding/single-cell RNA sequencing reveals that HER2+ breast cancer cells cycle stochastically through a "pre-DTP" state, characterized by a G0-like expression signature and enriched for diapause and/or senescence genes. Trajectory analysis/cell sorting shows that pre-DTPs preferentially yield DTPs upon HER2 TKI exposure. Cells with similar transcriptomes are present in HER2+ breast tumors and are associated with poor TKI response. Finally, biochemical experiments indicate that luminal-like DTPs survive via estrogen receptor-dependent induction of SGK3, leading to rewiring of the PI3K/AKT/mTORC1 pathway to enable AKT-independent mTORC1 activation. SIGNIFICANCE: DTPs are implicated in resistance to anticancer therapies, but their ontogeny and vulnerabilities remain unclear. We find that HER2 TKI-DTPs emerge from stochastically arising primed cells ("pre-DTPs") that engage either of two distinct transcriptional programs upon TKI exposure. Our results provide new insights into DTP ontogeny and potential therapeutic vulnerabilities. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Signal Transduction
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33827988

ABSTRACT

In order to understand the transmission and virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the functions of each of the gene products encoded in the viral genome. One feature of the SARS-CoV-2 genome that is not present in related, common coronaviruses is ORF10, a putative 38-amino acid protein-coding gene. Proteomic studies found that ORF10 binds to an E3 ubiquitin ligase containing Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B (CRL2ZYG11B). Since CRL2ZYG11B mediates protein degradation, one possible role for ORF10 is to "hijack" CRL2ZYG11B in order to target cellular, antiviral proteins for ubiquitylation and subsequent proteasomal degradation. Here, we investigated whether ORF10 hijacks CRL2ZYG11B or functions in other ways, for example, as an inhibitor or substrate of CRL2ZYG11B While we confirm the ORF10-ZYG11B interaction and show that the N terminus of ORF10 is critical for it, we find no evidence that ORF10 is functioning to inhibit or hijack CRL2ZYG11B Furthermore, ZYG11B and its paralog ZER1 are dispensable for SARS-CoV-2 infection in cultured cells. We conclude that the interaction between ORF10 and CRL2ZYG11B is not relevant for SARS-CoV-2 infection in vitro.


Subject(s)
COVID-19/metabolism , Cell Cycle Proteins/metabolism , Cullin Proteins/metabolism , Multiprotein Complexes/metabolism , Open Reading Frames , SARS-CoV-2/metabolism , Viral Proteins/metabolism , COVID-19/genetics , Cell Cycle Proteins/genetics , Cullin Proteins/genetics , HEK293 Cells , Humans , Multiprotein Complexes/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
7.
mBio ; 11(4)2020 08 25.
Article in English | MEDLINE | ID: mdl-32843553

ABSTRACT

The bacterial pathogen Mycobacterium tuberculosis is the leading cause of death by an infectious disease among humans. Here, we describe a previously uncharacterized M. tuberculosis protein, Rv0991c, as a molecular chaperone that is activated by oxidation. Rv0991c has homologs in most bacterial lineages and appears to function analogously to the well-characterized Escherichia coli redox-regulated chaperone Hsp33, despite a dissimilar protein sequence. Rv0991c is transcriptionally coregulated with hsp60 and hsp70 chaperone genes in M. tuberculosis, suggesting that Rv0991c functions with these chaperones in maintaining protein quality control. Supporting this hypothesis, we found that, like oxidized Hsp33, oxidized Rv0991c prevents the aggregation of a model unfolded protein in vitro and promotes its refolding by the M. tuberculosis Hsp70 chaperone system. Furthermore, Rv0991c interacts with DnaK and can associate with many other M. tuberculosis proteins. We therefore propose that Rv0991c, which we named "Ruc" (redox-regulated protein with unstructured C terminus), represents a founding member of a new chaperone family that protects M. tuberculosis and other species from proteotoxicity during oxidative stress.IMPORTANCEM. tuberculosis infections are responsible for more than 1 million deaths per year. Developing effective strategies to combat this disease requires a greater understanding of M. tuberculosis biology. As in all cells, protein quality control is essential for the viability of M. tuberculosis, which likely faces proteotoxic stress within a host. Here, we identify an M. tuberculosis protein, Ruc, that gains chaperone activity upon oxidation. Ruc represents a previously unrecognized family of redox-regulated chaperones found throughout the bacterial superkingdom. Additionally, we found that oxidized Ruc promotes the protein-folding activity of the essential M. tuberculosis Hsp70 chaperone system. This work contributes to a growing body of evidence that oxidative stress provides a particular strain on cellular protein stability.


Subject(s)
Bacterial Proteins/metabolism , Molecular Chaperones , Mycobacterium tuberculosis/metabolism , Animals , Bacterial Proteins/genetics , Escherichia coli Proteins/genetics , Female , Heat-Shock Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/genetics , Oxidation-Reduction , Oxidative Stress , Protein Folding , Protein Stability
8.
Pharmaceutics ; 12(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825235

ABSTRACT

Identification of antigens is important for vaccine production. We tested extraction protocols using cetyltrimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS) to formulate surfactant vesicles (SVs) containing components from Neisseria gonorrhoeae. Carbohydrate and protein assays demonstrated that protein and carbohydrates were incorporated into the vesicle leaflet. Depending on the extraction protocol utilized, 100-400 µg of protein/mL of SVs solution was obtained. Gel electrophoresis followed by silver staining demonstrated that SV extracts contained lipooligosaccharide and a subset of bacterial proteins and lipoproteins. Western blotting and mass spectral analysis indicated that the majority of the proteins were derived from the outer membrane. Mass spectrometric and bioinformatics analysis of SVs identified 29 membrane proteins, including porin and opacity-associated protein. Proteins embedded in the SVs leaflet could be degraded by the addition of trypsin or proteinase K. Our data showed that the incorporation of CTAT and SDBS into vesicles eliminated their toxicity as measured by a THP-1 killing assay. Incorporation of gonococcal cell surface components into SVs reduced toxicity as compared to the whole cell extracts, as measured by cytokine induction, while retaining the immunogenicity. This process constitutes a general method for extracting bacterial surface components and identification of antigens that might be included in vaccines.

9.
Cell ; 182(6): 1545-1559.e18, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32846159

ABSTRACT

In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15- to 18-nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.


Subject(s)
Argonaute Proteins/metabolism , Bacterial Proteins/metabolism , DNA Gyrase/metabolism , DNA Replication/genetics , DNA/metabolism , Thermus thermophilus/metabolism , Argonaute Proteins/genetics , Bacterial Proteins/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chromosomes/metabolism , Ciprofloxacin/pharmacology , DNA/genetics , DNA Replication/drug effects , Endonucleases/metabolism , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Models, Molecular , Recombinant Proteins , Recombination, Genetic/drug effects , Recombination, Genetic/genetics , Single Molecule Imaging , Tandem Mass Spectrometry , Thermus thermophilus/genetics , Thermus thermophilus/growth & development , Thermus thermophilus/ultrastructure , Topoisomerase II Inhibitors/pharmacology
10.
Nature ; 579(7798): 260-264, 2020 03.
Article in English | MEDLINE | ID: mdl-32132711

ABSTRACT

The production of pore-forming toxins that disrupt the plasma membrane of host cells is a common virulence strategy for bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA)1-3. It is unclear, however, whether host species possess innate immune mechanisms that can neutralize pore-forming toxins during infection. We previously showed that the autophagy protein ATG16L1 is necessary for protection against MRSA strains encoding α-toxin4-a pore-forming toxin that binds the metalloprotease ADAM10 on the surface of a broad range of target cells and tissues2,5,6. Autophagy typically involves the targeting of cytosolic material to the lysosome for degradation. Here we demonstrate that ATG16L1 and other ATG proteins mediate protection against α-toxin through the release of ADAM10 on exosomes-extracellular vesicles of endosomal origin. Bacterial DNA and CpG DNA induce the secretion of ADAM10-bearing exosomes from human cells as well as in mice. Transferred exosomes protect host cells in vitro by serving as scavengers that can bind multiple toxins, and improve the survival of mice infected with MRSA in vivo. These findings indicate that ATG proteins mediate a previously unknown form of defence in response to infection, facilitating the release of exosomes that serve as decoys for bacterially produced toxins.


Subject(s)
Autophagy-Related Proteins/metabolism , Bacterial Toxins/metabolism , Exosomes/metabolism , A549 Cells , ADAM10 Protein/metabolism , Animals , Bacterial Toxins/pharmacology , Cell Survival/drug effects , DNA, Bacterial/pharmacology , Exosomes/drug effects , Exosomes/ultrastructure , Female , HEK293 Cells , Humans , Male , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/physiology , Mice , Mice, Inbred C57BL , Staphylococcal Infections/mortality
11.
Proc Natl Acad Sci U S A ; 116(27): 13563-13572, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31217288

ABSTRACT

The pathogen Staphylococcus aureus colonizes and infects a variety of different sites within the human body. To adapt to these different environments, S. aureus relies on a complex and finely tuned regulatory network. While some of these networks have been well-elucidated, the functions of more than 50% of the transcriptional regulators in S. aureus remain unexplored. Here, we assess the contribution of the LacI family of metabolic regulators to staphylococcal virulence. We found that inactivating the purine biosynthesis regulator purR resulted in a strain that was acutely virulent in bloodstream infection models in mice and in ex vivo models using primary human neutrophils. Remarkably, these enhanced pathogenic traits are independent of purine biosynthesis, as the purR mutant was still highly virulent in the presence of mutations that disrupt PurR's canonical role. Through the use of transcriptomics coupled with proteomics, we revealed that a number of virulence factors are differentially regulated in the absence of purR Indeed, we demonstrate that PurR directly binds to the promoters of genes encoding virulence factors and to master regulators of virulence. These results guided us into further ex vivo and in vivo studies, where we discovered that S. aureus toxins drive the death of human phagocytes and mice, whereas the surface adhesin FnbA contributes to the increased bacterial burden observed in the purR mutant. Thus, S. aureus repurposes a metabolic regulator to directly control the expression of virulence factors, and by doing so, tempers its pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Purines/biosynthesis , Repressor Proteins/metabolism , Staphylococcus aureus/metabolism , Virulence Factors/metabolism , Animals , Bacterial Proteins/physiology , Gene Expression Regulation, Bacterial/physiology , Humans , Mice , Repressor Proteins/physiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity , Transcription Factors/metabolism , Transcription Factors/physiology , Virulence Factors/physiology
12.
J Bacteriol ; 201(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31036728

ABSTRACT

We characterized an operon in Mycobacterium tuberculosis, Rv3679-Rv3680, in which each open reading frame is annotated to encode "anion transporter ATPase" homologues. Using structure prediction modeling, we found that Rv3679 and Rv3680 more closely resemble the guided entry of tail-anchored proteins 3 (Get3) chaperone in eukaryotes. Get3 delivers proteins into the membranes of the endoplasmic reticulum and is essential for the normal growth and physiology of some eukaryotes. We sought to characterize the structures of Rv3679 and Rv3680 and test if they have a role in M. tuberculosis pathogenesis. We solved crystal structures of the nucleotide-bound Rv3679-Rv3680 complex at 2.5 to 3.2 Å and show that while it has some similarities to Get3 and ArsA, there are notable differences, including that these proteins are unlikely to be involved in anion transport. Deletion of both genes did not reveal any conspicuous growth defects in vitro or in mice. Collectively, we identified a new class of proteins in bacteria with similarity to Get3 complexes, the functions of which remain to be determined.IMPORTANCE Numerous bacterial species encode proteins predicted to have similarity with Get3- and ArsA-type anion transporters. Our studies provide evidence that these proteins, which we named BagA and BagB, are unlikely to be involved in anion transport. In addition, BagA and BagB are conserved in all mycobacterial species, including the causative agent of leprosy, which has a highly decayed genome. This conservation suggests that BagAB constitutes a part of the core mycobacterial genome and is needed for some yet-to-be-determined part of the life cycle of these organisms.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Animals , Anion Transport Proteins/genetics , Female , Genome, Bacterial , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Mice , Mice, Inbred C57BL , Models, Molecular , Operon , Protein Binding , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
13.
Proc Natl Acad Sci U S A ; 116(8): 3202-3210, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30723150

ABSTRACT

The human pathogen Mycobacterium tuberculosis encodes a proteasome that carries out regulated degradation of bacterial proteins. It has been proposed that the proteasome contributes to nitrogen metabolism in M. tuberculosis, although this hypothesis had not been tested. Upon assessing M. tuberculosis growth in several nitrogen sources, we found that a mutant strain lacking the Mycobacterium proteasomal activator Mpa was unable to use nitrate as a sole nitrogen source due to a specific failure in the pathway of nitrate reduction to ammonium. We found that the robust activity of the nitrite reductase complex NirBD depended on expression of the groEL/groES chaperonin genes, which are regulated by the repressor HrcA. We identified HrcA as a likely proteasome substrate, and propose that the degradation of HrcA is required for the full expression of chaperonin genes. Furthermore, our data suggest that degradation of HrcA, along with numerous other proteasome substrates, is enhanced during growth in nitrate to facilitate the derepression of the chaperonin genes. Importantly, growth in nitrate is an example of a specific condition that reduces the steady-state levels of numerous proteasome substrates in M. tuberculosis.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Chaperonin 60/genetics , Heat-Shock Proteins/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Ammonium Compounds/metabolism , Chaperonins/genetics , Chaperonins/metabolism , Humans , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Nitrogen/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Tuberculosis/genetics , Tuberculosis/metabolism , Tuberculosis/pathology
14.
J Proteome Res ; 17(11): 3681-3692, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30295032

ABSTRACT

Modern mass spectrometry now permits genome-scale and quantitative measurements of biological proteomes. However, analysis of specific specimens is currently hindered by the incomplete representation of biological variability of protein sequences in canonical reference proteomes and the technical demands for their construction. Here, we report ProteomeGenerator, a framework for de novo and reference-assisted proteogenomic database construction and analysis based on sample-specific transcriptome sequencing and high-accuracy mass spectrometry proteomics. This enables the assembly of proteomes encoded by actively transcribed genes, including sample-specific protein isoforms resulting from non-canonical mRNA transcription, splicing, or editing. To improve the accuracy of protein isoform identification in non-canonical proteomes, ProteomeGenerator relies on statistical target-decoy database matching calibrated using sample-specific controls. Its current implementation includes automatic integration with MaxQuant mass spectrometry proteomics algorithms. We applied this method for the proteogenomic analysis of splicing factor SRSF2 mutant leukemia cells, demonstrating high-confidence identification of non-canonical protein isoforms arising from alternative transcriptional start sites, intron retention, and cryptic exon splicing as well as improved accuracy of genome-scale proteome discovery. Additionally, we report proteogenomic performance metrics for current state-of-the-art implementations of SEQUEST HT, MaxQuant, Byonic, and PEAKS mass spectral analysis algorithms. Finally, ProteomeGenerator is implemented as a Snakemake workflow within a Singularity container for one-step installation in diverse computing environments, thereby enabling open, scalable, and facile discovery of sample-specific, non-canonical, and neomorphic biological proteomes.


Subject(s)
Algorithms , Peptides/chemistry , Proteomics/methods , RNA, Messenger/genetics , Software , Transcriptome , Alternative Splicing , Amino Acid Sequence , Cell Line, Tumor , Humans , Leukocytes/metabolism , Leukocytes/pathology , Mass Spectrometry/statistics & numerical data , Molecular Sequence Annotation , Mutation , Peptide Mapping/statistics & numerical data , Peptides/classification , Peptides/isolation & purification , Proteogenomics/methods , Proteogenomics/statistics & numerical data , Proteome , RNA, Messenger/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
15.
J Proteome Res ; 14(8): 3403-8, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26153614

ABSTRACT

Recent developments in quantitative high-resolution mass spectrometry have led to significant improvements in the sensitivity and specificity of the biochemical analyses of cellular reactions, protein-protein interactions, and small-molecule-drug discovery. These approaches depend on cellular proteome extraction that preserves native protein activities. Here, we systematically analyzed mechanical methods of cell lysis and physical protein extraction to identify those that maximize the extraction of cellular proteins while minimizing their denaturation. Cells were mechanically disrupted using Potter-Elvehjem homogenization, probe- or adaptive-focused acoustic sonication, and were in the presence of various detergents, including polyoxyethylene ethers and esters, glycosides, and zwitterions. Using fluorescence spectroscopy, biochemical assays, and mass spectrometry proteomics, we identified the combination of adaptive focused acoustic (AFA) sonication in the presence of a binary poloxamer-based mixture of octyl-ß-glucoside and Pluronic F-127 to maximize the depth and yield of the proteome extraction while maintaining native protein activity. This binary poloxamer extraction system allowed for native proteome extraction comparable in coverage to the proteomes extracted using denaturing SDS or guanidine-containing buffers, including the efficient extraction of all major cellular organelles. This high-efficiency cellular extraction system should prove useful for a variety of cell biochemical studies, including structural and functional proteomics.


Subject(s)
Cell Extracts/chemistry , Peptides/metabolism , Proteome/metabolism , Proteomics/methods , Subcellular Fractions/metabolism , Cell Extracts/isolation & purification , Cell Line , Cell Line, Tumor , Chemical Fractionation/methods , Chromatography, Liquid/methods , Detergents/chemistry , HeLa Cells , Humans , Jurkat Cells , Poloxamer/chemistry , Proteome/isolation & purification , Reproducibility of Results , Sonication/methods , Spectrometry, Fluorescence , Tandem Mass Spectrometry/methods
16.
Int J Mass Spectrom ; 378: 264-269, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25937807

ABSTRACT

Top-down analysis is reported for a portion of the protein cargo of exosomes shed by myeloid-derived suppressor cells that participate in intracellular signaling in the tumor microenvironment. Instrument mass resolution limited the study to proteins of molecular masses below 30 kDa. A two-step fractionation strategy was used, including open tubular gel electrophoresis and C3 reverse phase high performance liquid chromatography. Twenty-one unique proteins were identified among more than 200 proteoforms, and comprising primarily two functionally important protein families: the S100 proinflammatory mediators and an abundance of histones. Fifty-six percent of the total protein in these exosomes was determined to comprise histones, of which H2B variants contribute 42 %.

SELECTION OF CITATIONS
SEARCH DETAIL
...