Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 1(6): e1500094, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26601211

ABSTRACT

In recent times, atomically thin alloys of boron, nitrogen, and carbon have generated significant excitement as a composition-tunable two-dimensional (2D) material that demonstrates rich physics as well as application potentials. The possibility of tunably incorporating oxygen, a group VI element, into the honeycomb sp(2)-type 2D-BNC lattice is an intriguing idea from both fundamental and applied perspectives. We present the first report on an atomically thin quaternary alloy of boron, nitrogen, carbon, and oxygen (2D-BNCO). Our experiments suggest, and density functional theory (DFT) calculations corroborate, stable configurations of a honeycomb 2D-BNCO lattice. We observe micrometer-scale 2D-BNCO domains within a graphene-rich 2D-BNC matrix, and are able to control the area coverage and relative composition of these domains by varying the oxygen content in the growth setup. Macroscopic samples comprising 2D-BNCO domains in a graphene-rich 2D-BNC matrix show graphene-like gate-modulated electronic transport with mobility exceeding 500 cm(2) V(-1) s(-1), and Arrhenius-like activated temperature dependence. Spin-polarized DFT calculations for nanoscale 2D-BNCO patches predict magnetic ground states originating from the B atoms closest to the O atoms and sizable (0.6 eV < E g < 0.8 eV) band gaps in their density of states. These results suggest that 2D-BNCO with novel electronic and magnetic properties have great potential for nanoelectronics and spintronic applications in an atomically thin platform.

2.
J Nanosci Nanotechnol ; 12(5): 3950-3, 2012 May.
Article in English | MEDLINE | ID: mdl-22852330

ABSTRACT

Oblique-angle deposition of indium tin oxide (ITO) is used to fabricate optical thin-film coatings with a porous, columnar nanostructure. Indium tin oxide is a material that is widely used in industrial applications because it is both optically transparent and electrically conductive. The ITO coatings are fabricated, using electron-beam evaporation, with a range of deposition angles between 0 degrees (normal incidence) and 80 degrees. As the deposition angle increases, we find that the porosity of the ITO film increases and the refractive index decreases. We measure the resistivity of the ITO film at each deposition angle, and find that as the porosity increases, the resistivity increases superlinearly. A new theoretical model is presented to describe the relationship between the ITO film's resistivity and its porosity. The model takes into account the columnar structure of the film, and agrees very well with the experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL