Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Br J Pharmacol ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209310

ABSTRACT

G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.

2.
Br J Pharmacol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978399

ABSTRACT

G protein-coupled receptors (GPCRs) are one of the major drug targets. In recent years, computational drug design for GPCRs has mainly focused on static structures obtained through X-ray crystallography, cryogenic electron microscopy (cryo-EM) or in silico modelling as a starting point for virtual screening campaigns. However, GPCRs are highly flexible entities with the ability to adopt different conformational states that elicit different physiological responses. Including this knowledge in the drug discovery pipeline can help to tailor novel conformation-specific drugs with an improved therapeutic profile. In this review, we outline our current knowledge about GPCR dynamics that is relevant for receptor activation, signalling bias and allosteric modulation. Ultimately, we highlight new technological implementations such as time-resolved X-ray crystallography and cryo-EM as well as computational algorithms that can contribute to a more comprehensive understanding of receptor dynamics and its relevance for GPCR functionality.

3.
Acta Physiol (Oxf) ; 240(9): e14209, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39072954

ABSTRACT

AIM: Mitochondrial uncoupling protein 1 (UCP1) is a unique protein of brown adipose tissue. Upon activation by free fatty acids, UCP1 facilitates a thermogenic net proton flux across the mitochondrial inner membrane. Non-complexed purine nucleotides inhibit this fatty acid-induced activity of UCP1. The most available data have been generated from rodent model systems. In light of its role as a putative pharmacological target for treating metabolic disease, in-depth analyses of human UCP1 activity, regulation, and structural features are essential. METHODS: In the present study, we established a doxycycline-regulated cell model with inducible human or murine UCP1 expression and conducted functional studies using respirometry comparing wild-type and mutant variants of human UCP1. RESULTS: We demonstrate that human and mouse UCP1 exhibit similar specific fatty acid-induced activity but a different inhibitory potential of purine nucleotides. Mutagenesis of non-conserved residues in human UCP1 revealed structural components in α-helix 56 and α-helix 6 crucial for uncoupling function. CONCLUSION: Comparative studies of human UCP1 with other orthologs can provide new insights into the structure-function relationship for this mitochondrial carrier and will be instrumental in searching for new activators.


Subject(s)
Uncoupling Protein 1 , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Animals , Humans , Mice , Mitochondria/metabolism , Purine Nucleotides/metabolism
4.
Cell Mol Life Sci ; 81(1): 217, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748186

ABSTRACT

The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.


Subject(s)
Bile Acids and Salts , Peptides , Receptors, G-Protein-Coupled , Taste , Bile Acids and Salts/metabolism , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Taste/physiology , Peptides/metabolism , Phylogeny , HEK293 Cells , Amino Acids/metabolism , Cell Membrane/metabolism
5.
Nature ; 628(8008): 506-507, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600187
6.
Food Chem ; 446: 138884, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38432139

ABSTRACT

Arabica coffee contains the bitter-tasting diterpene glycoside mozambioside, which degrades during coffee roasting, leading to yet unknown structurally related degradation products with possibly similar bitter-receptor-activating properties. The study aimed at the generation, isolation, and structure elucidation of individual pyrolysis products of mozambioside and characterization of bitter receptor activation by in vitro analysis in HEK 293T-Gα16gust44 cells. The new compounds 17-O-ß-d-glucosyl-11-hydroxycafestol-2-on, 11-O-ß-d-glucosyl-16-desoxycafestol-2-on, 11-O-ß-d-glucosyl-(S)-16-desoxy-17-oxocafestol-2-on, 11-O-ß-d-glucosyl-15,16-dehydrocafestol-2-on, and 11-O-ß-d-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on were isolated from pyrolyzed mozambioside by HPLC and identified by NMR and UHPLC-ToF-MS. Roasting products 11-O-ß-d-glucosyl-(S)-16-desoxy-17-oxocafestol-2-on, 11-O-ß-d-glucosyl-15,16-dehydrocafestol-2-on, and 11-O-ß-d-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on had lower bitter receptor activation thresholds compared to mozambioside. Molecular docking simulations revealed the binding modes of the compounds 11-O-ß-d-glucosyl-15,16-dehydrocafestol-2-on and 11-O-ß-d-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on and their aglycone 11-hydroxycafestol-2-on in the two cognate receptors TAS2R43 and TAS2R46. The newly discovered roasting products 17-O-ß-d-glucosyl-11-hydroxycafestol-2-on, 11-O-ß-d-glucosyl-(S)-16-desoxy-17-oxocafestol-2-on, 11-O-ß-d-glucosyl-15,16-dehydrocafestol-2-on, and 11-O-ß-d-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on were detected in authentic roast coffee brew by UHPLC-ToF-MS and could contribute to coffee's bitter taste impression.


Subject(s)
Glycosides , Taste , Molecular Docking Simulation , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy
7.
Br J Pharmacol ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38339984

ABSTRACT

A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.

8.
J Chem Inf Model ; 63(21): 6667-6680, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37847527

ABSTRACT

Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.


Subject(s)
Receptors, Odorant , Animals , Mice , Receptors, G-Protein-Coupled/chemistry , Amines , Binding Sites , Ligands
10.
Commun Biol ; 6(1): 612, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286811

ABSTRACT

Beside the oral cavity, bitter taste receptors are expressed in several non-gustatory tissues. Whether extra-oral bitter taste receptors function as sensors for endogenous agonists is unknown. To address this question, we devised functional experiments combined with molecular modeling approaches to investigate human and mouse receptors using a variety of bile acids as candidate agonists. We show that five human and six mouse receptors are responsive to an array of bile acids. Moreover, their activation threshold concentrations match published data of bile acid concentrations in human body fluids, suggesting a putative physiological activation of non-gustatory bitter receptors. We conclude that these receptors could serve as sensors for endogenous bile acid levels. These results also indicate that bitter receptor evolution may not be driven solely by foodstuff or xenobiotic stimuli, but also depend on endogenous ligands. The determined bitter receptor activation profiles of bile acids now enable detailed physiological model studies.


Subject(s)
Receptors, G-Protein-Coupled , Taste , Humans , Mice , Animals , Taste/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/agonists , Ligands , Models, Molecular
12.
Mol Nutr Food Res ; 67(11): e2200775, 2023 06.
Article in English | MEDLINE | ID: mdl-36929150

ABSTRACT

SCOPE: To avoid ingestion of potentially harmful substances, humans are equipped with about 25 bitter taste receptor genes (TAS2R) expressed in oral taste cells. Humans exhibit considerable variance in their bitter tasting abilities, which are associated with genetic polymorphisms in bitter taste receptor genes. One of these variant receptor genes, TAS2R2, is initially believed to represent a pseudogene. However, TAS2R2 exists in a putative functional variant within some populations and can therefore be considered as an additional functional bitter taste receptor. METHODS AND RESULTS: To learn more about the function of the experimentally neglected TAS2R2, a functional screening with 122 bitter compounds is performed. The study observes responses with eight of the 122 bitter substances and identifies the substance phenylbutazone as a unique activator of TAS2R2 among the family of TAS2Rs, thus filling one more gap in the array of cognate bitter substances. CONCLUSIONS: The comprehensive characterization of the receptive range of TAS2R2 allows the classification into the group of TAS2Rs with a medium number of bitter agonists. The variability of bitter taste and its potential influences on food choice in some human populations may be even higher than assumed.


Subject(s)
Receptors, G-Protein-Coupled , Taste , Humans , Taste/genetics , Receptors, G-Protein-Coupled/genetics , Taste Perception/genetics
13.
J Agric Food Chem ; 71(13): 5314-5325, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36943188

ABSTRACT

Human gingival fibroblast cells (HGF-1 cells) present an important cell model to investigate the gingiva's response to inflammatory stimuli such as lipopolysaccharides from Porphyromonas gingivalis (Pg-LPS). Recently, we demonstrated trans-resveratrol to repress the Pg-LPS evoked release of the pro-inflammatory cytokine interleukin-6 (IL-6) via involvement of bitter taste sensing receptor TAS2R50 in HGF-1 cells. Since HGF-1 cells express most of the known 25 TAS2Rs, we hypothesized an association between a compound's bitter taste threshold and its repressing effect on the Pg-LPS evoked IL-6 release by HGF-1 cells. To verify our hypothesis, 11 compounds were selected from the chemical bitter space and subjected to the HGF-1 cell assay, spanning a concentration range between 0.1 µM and 50 mM. In the first set of experiments, the specific role of TAS2R50 was excluded by results from structurally diverse TAS2R agonists and antagonists and by means of a molecular docking approach. In the second set of experiments, the HGF-1 cell response was used to establish a linear association between a compound's effective concentration to repress the Pg-LPS evoked IL-6 release by 25% and its bitter taste threshold concentration published in the literature. The Pearson correlation coefficient revealed for this linear association was R2 = 0.60 (p < 0.01), exceeding respective data for the test compounds from a well-established native cell model, the HGT-1 cells, with R2 = 0.153 (p = 0.263). In conclusion, we provide a predictive model for bitter tasting compounds with a potential to act as anti-inflammatory substances.


Subject(s)
Taste Threshold , Taste , Humans , Interleukin-6/genetics , Interleukin-6/pharmacology , Gingiva , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Porphyromonas gingivalis , Fibroblasts , Receptors, G-Protein-Coupled/genetics
14.
J Chem Inf Model ; 63(7): 2014-2029, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36696962

ABSTRACT

With approximately 400 encoding genes in humans, odorant receptors (ORs) are the largest subfamily of class A G protein-coupled receptors (GPCRs). Despite its high relevance and representation, the odorant-GPCRome is structurally poorly characterized: no experimental structures are available, and the low sequence identity of ORs to experimentally solved GPCRs is a significant challenge for their modeling. Moreover, the receptive range of most ORs is unknown. The odorant receptor OR5K1 was recently and comprehensively characterized in terms of cognate agonists. Here, we report two additional agonists and functional data of the most potent compound on two mutants, L1043.32 and L2556.51. Experimental data was used to guide the investigation of the binding modes of OR5K1 ligands into the orthosteric binding site using structural information from AI-driven modeling, as recently released in the AlphaFold Protein Structure Database, and from homology modeling. Induced-fit docking simulations were used to sample the binding site conformational space for ensemble docking. Mutagenesis data guided side chain residue sampling and model selection. We obtained models that could better rationalize the different activity of active (agonist) versus inactive molecules with respect to starting models and also capture differences in activity related to minor structural differences. Therefore, we provide a model refinement protocol that can be applied to model the orthosteric binding site of ORs as well as that of GPCRs with low sequence identity to available templates.


Subject(s)
Receptors, Odorant , Humans , Receptors, Odorant/genetics , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Odorants , Receptors, G-Protein-Coupled/chemistry , Binding Sites , GTP-Binding Proteins/metabolism , Ligands
15.
Int J Pharm ; 628: 122263, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36208839

ABSTRACT

Bitter taste receptors were recently found to be involved in numerous physiological and pathological conditions other than taste and are suggested as potential drug targets. In vivo and in vitro techniques for screening bitterants as ligands come with economical, time and ethic challenges. Therefore, in silico tools can represent a valuable alternative due to their practicality. Yet, the main challenge of already established ligand-based (LB) classifiers is the low number of experimentally confirmed bitterants and non-bitterants. Premexotac models were constructed as a LB bitterants screener, exploring novel combinations of feature extraction, feature selection and learning algorithms as a contrast with the already available screeners. Premexotac came among the top performers, exhibiting a F-1 score up to 81% on external validation. Premexotac identified as well insights on physicochemical and topological descriptors important for bitter prediction. Among the key insights, important molecular substructures from Extended Connectivity Fingerprints for bitterness classification were identified. Also, the importance of a selection of physicochemical/topological descriptors was ranked using mutual information and it was found that descriptors related to the ramification of the molecular structure and molecular weight came at the top of the ranking. The remaining challenges for improving performance were discussed and stated, widening the LB bitterness prediction outlook.


Subject(s)
Aversive Agents , Machine Learning , Algorithms , Taste , Ligands , Drug Development
16.
Biomedicines ; 10(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36289704

ABSTRACT

We explored the structural features of recombinant ostreolysin A (rOlyA), a protein produced by Pleurotus ostreatus and responsible for binding to α/ß-tubulin. We found that rOlyA cell internalization is essential for the induction of adipocyte-associated activity, which is mediated by the interaction of rOlyA and microtubule proteins. We created different point mutations at conserved tryptophan (W) sites in rOlyA and analyzed their biological activity in HIB-1B preadipocytes. We demonstrated that the protein's cell-internalization ability and the differentiated phenotype induced, such as small lipid-droplet formation and gene expression of mitogenesis activity, were impaired in point-mutated proteins W96A and W28A, where W was converted to alanine (A). We also showed that an rOlyA homologue, OlyA6 complexed with mCherry, cannot bind to ß-tubulin and does not induce mitochondrial biosynthesis-associated markers, suggesting that the OlyA6 region masked by mCherry is involved in ß-tubulin binding. Protein-protein docking simulations were carried out to investigate the binding mode of rOlyA with ß-tubulin. Taken together, we identified functional sites in rOlyA that are essential for its binding to ß-tubulin and its adipocyte-associated biological activity.

17.
J Chem Inf Model ; 62(3): 511-522, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35113559

ABSTRACT

The extracellular loop 2 (ECL2) is the longest and the most diverse loop among class A G protein-coupled receptors (GPCRs). It connects the transmembrane (TM) helices 4 and 5 and contains a highly conserved cysteine through which it is bridged with TM3. In this paper, experimental ECL2 structures were analyzed based on their sequences, shapes, and intramolecular contacts. To take into account the flexibility, we incorporated into our analyses information from the molecular dynamics trajectories available on the GPCRmd website. Despite the high sequence variability, shapes of the analyzed structures, defined by the backbone volume overlaps, can be clustered into seven main groups. Conformational differences within the clusters can be then identified by intramolecular interactions with other GPCR structural domains. Overall, our work provides a reorganization of the structural information of the ECL2 of class A GPCR subfamilies, highlighting differences and similarities on sequence and conformation levels.


Subject(s)
Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Protein Structure, Secondary , Receptors, G-Protein-Coupled/chemistry
18.
Food Chem ; 375: 131680, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34857413

ABSTRACT

Mammals perceive a multitude of odorants by their chemical sense of olfaction, a high-dimensional stimulus-detection system, with hundreds of narrowly or broadly tuned receptors, enabling pattern recognition by the brain. Cognate receptor-agonist information, however, is sparse, and the role of broadly tuned odorant receptors for encoding odor quality remains elusive. Here, we screened IL-6-HaloTag®-OR2W1 and haplotypes against 187 out of 230 defined key food odorants using the GloSensor™ system in HEK-293 cells, yielding 48 new agonists. Altogether, key food odorants represent about two-thirds of now 153 reported agonists of OR2W1, the highest number of agonists known for a mammalian odorant receptor. In summary, we characterized OR2W1 as a human odorant receptor, with a chemically diverse but exclusive receptive range, complementary to chemical subgroups covered by evolutionary younger, highly selective receptors. Our data suggest OR2W1 to be suited for participating in the detection of many foodborne odorants.


Subject(s)
Odorants , Receptors, Odorant , Animals , Food , HEK293 Cells , Humans , Smell
20.
J Agric Food Chem ; 69(46): 13916-13924, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34762411

ABSTRACT

Food compounds with a bitter taste have a role in human health, both for their capability to influence food choice and preferences and for their possible systemic effect due to the modulation of extra-oral bitter taste receptors (TAS2Rs). Investigating the interaction of bitter food compounds with TAS2Rs is a key step to unravel their complex effects on health and to pave the way to rationally design new additives for food formulation or drugs. Here, we propose a collection of food bitter compounds, for which in vitro activity data against TAS2Rs are available. The patterns of TAS2R subtype-specific agonists were analyzed using scaffold decomposition and chemical space analysis, providing a detailed characterization of the associations between food bitter tastants and TAS2Rs.


Subject(s)
Pharmaceutical Preparations , Taste Buds , Cheminformatics , Humans , Receptors, G-Protein-Coupled/genetics , Taste
SELECTION OF CITATIONS
SEARCH DETAIL