Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Nat Mater ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39317816

ABSTRACT

Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understand these phenomena. Here we utilize single-shot optical pump-X-ray probe measurements to capture snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, an initially heterogeneous mixture of polar phase disorders within a few picoseconds, leading to a state composed of disordered ferroelectric and suppressed vortex orders. On the picosecond-nanosecond timescales, transient labyrinthine fluctuations develop, accompanied by the recovery of the vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single vortex supercrystal phase. Our results, corroborated by dynamical phase-field modelling, reveal non-equilibrium pathways following the ultrafast excitation of designer systems to persistent metastability.

2.
Macromol Rapid Commun ; : e2400560, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319687

ABSTRACT

Current wood identification struggles to differentiate white and red oak (Quercus alba and Quercus rubra) due to highly similar microstructures, as demonstrated by morphological microscope analysis. The present research explores lignin composition as a potential discriminating factor. Here, a rapid and sustainable method for extracting high-quality lignin from oak samples using acidic γ-valerolactone (GVL) under mild conditions is described. As-extracted lignin is thoroughly characterized using various analytical methods, and results reveal a distinct structural difference between the lignin from the two species. White oak lignin possesses a unique "Hibbert ketone" unit detectable by nuclear magnetic resonance spectroscopy (NMR), which is absent in red oak lignin. In addition, infrared spectroscopy differentiates the species based on specific carbonyl groups present in their lignin. These findings suggest that identifying the presence of the Hibbert ketone unit in lignin may offer a highly efficient and reliable method for differentiating white and red oak, opening new avenues for wood identification.

3.
Int J Biol Macromol ; 254(Pt 1): 127487, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37863138

ABSTRACT

Lignin is a common and abundant byproduct of the pulp and paper industry and is generally burned to produce steam. Opportunities exist to acquire greater value from lignin by leveraging the properties of this highly conjugated biomacromolecule for applications in UV absorption and polymer reinforcement. These applications can be commercialized by producing value-added lignin nanoparticles (LNPs) using a scalable sonochemical process. In the present research, monodisperse LNPs have been synthesized by subjecting aqueous dispersions of alkali lignin to acoustic irradiation. The resulting particle size distribution and colloidal stability, as determined by dynamic light scattering, transmission electron microscopy and zeta potential analysis, of LNPs can be adjusted by varying the solution pH and ultrasonication energy. As-synthesized LNPs with a mean diameter of 204 nm were incorporated into poly (vinyl) alcohol (PVA) to prepare thin and flexible nanocomposite films using a simple solvent casting method. The addition of 2.5 wt% LNP increased the material's Sun Protection Factor up to 26 compared to 0 for neat PVA, while maintaining light transmission above 75 % in the visible spectra. In addition, the tensile strength and elastic modulus of the PVA nanocomposites improved by 47 % and 36 %, respectively. The presence of LNP also enhanced the thermal stability of the materials. Significantly, the proposed sonochemical process may be generally applicable to the synthesis of a range of naturally-derived LNPs for a variety of value-added applications.


Subject(s)
Lignin , Nanoparticles , Lignin/chemistry , Polyvinyl Alcohol/chemistry , Water , Steam , Ethanol , Nanoparticles/chemistry
4.
ACS Appl Mater Interfaces ; 15(30): 36647-36656, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37437162

ABSTRACT

The continuous flow assembly of colloidal nanoparticles from aqueous suspensions into macroscopic materials in a field-assisted double flow focusing system offers an attractive way to bridge the outstanding nanoscale characteristics of renewable cellulose nanofibrils (CNFs) at scales most common to human technologies. By incorporating single-walled carbon nanotubes (SWNTs) during the fabrication process, high-performance functional filament nanocomposites were produced. CNFs and SWNTs were first dispersed in water without any external surfactants or binding agents, and the resulting nanocolloids were aligned by means of an alternating electric field combined with extensional sheath flows. The nanoscale orientational anisotropy was then locked by a liquid-gel transition during the materials assembly into macroscopic filaments, which greatly improved their mechanical, electrical, and liquid sensing properties. Significantly, these findings pave the way toward the environmentally friendly and scalable manufacturing of a variety of multifunctional fibers for diverse applications.

5.
Polymers (Basel) ; 15(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36850221

ABSTRACT

The use of agricultural waste biomass for nanocellulose production has gained interest due to its environmental and economic benefits compared to conventional bleached pulp feedstock. However, there is still a need to establish robust process technologies that can accommodate the variability of waste feedstocks and to understand the effects of feedstock characteristics on the final nanofiber properties. Here, lignocellulosic nanofibers with unique properties are produced from various waste biomass based on a simple and low-cost process using mild operating conditions. The process robustness is demonstrated by diversifying the feedstock, ranging from food crop waste (corn stover) to invasive grass species (reed canary grass) and industrial lignocellulosic residues (industrial hemp). This comprehensive study provides a thorough examination of the influence of the feedstocks' physico-chemical characteristics on the conversion treatment, including process yield, degree of delignification, effectiveness of nanofibrillation, fiber morphology, surface charge, and density. Results show that nanofibers have been successfully produced from all feedstocks, with minor to no adjustments to process conditions. This work provides a framework for future studies to engineer nanocellulose with specific properties by taking advantage of biomass feedstocks' intrinsic characteristics to enable versatile applications.

6.
Int J Biol Macromol ; 227: 863-871, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36535352

ABSTRACT

Hybridization of nanocellulose with zinc oxide nanoparticles can improve the dispersibility of the zinc oxide and bring new functions to the bio-based products. In this study, cellulose nanocrystal/zinc oxide (CNC/ZnO) nanohybrids with reinforcing and antibacterial properties were prepared via a facile one-pot route. Microcrystalline cellulose (MCC) was first treated with acidified zinc chloride and hydrolyzed into CNCs, which then served as a stabilizing and supporting agent for the in-situ growth of ZnO nanoparticles during subsequent chemical precipitation. The acidified ZnCl2 solution played a dual role, acting both as cellulose hydrolytic media and as ZnO precursor. By adjusting the pH of the zinc precursor solution (pH = 9-12), well-dispersed rod-like (length: 137.0-468.0 nm, width: 54.1-154.1 nm) and flower-like (average diameter: 179.6 nm) ZnO nanoparticles with hexagonal wurtzite structure were obtained. CNC/ZnO nanohybrids were incorporated into waterborne polyurethane (WPU) films. The Young's modulus and tensile strength of the nanocomposite films increased gradually from 154.8 to 509.0 MPa and from 16.5 to 29.9 MPa, respectively, with increasing CNC/ZnO nanofiller content up to 10 wt%. The 10 % CNC/ZnO composites showed inhibition rates to both E. coli and S. aureus above 88.8 %.


Subject(s)
Nanocomposites , Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Staphylococcus aureus , Escherichia coli , Nanoparticles/chemistry , Cellulose/chemistry , Nanocomposites/chemistry
7.
Carbohydr Polym ; 295: 119857, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35988980

ABSTRACT

Cellulose nanofibrils are typically prepared from high-purity bleached pulp through harsh chemical treatments (e.g., TEMPO oxidation), resulting in high costs and environmental impact. In this work, we utilize inexpensive wheat straw feedstock and alkaline peroxide pulping followed by mild peracetic acid (PAA) pretreatment to produce lignocellulosic nanomaterials (nano and microfibrils) with potential bioplastics applications. PAA was chosen due to its biodegradability, non-toxicity, and high reaction selectivity. As-synthesized lignocellulosic nanomaterials were thoroughly characterized and compared to nanofibrils produced via TEMPO oxidation pretreatment and then applied as reinforcing agents in plastic composites. A remarkable case of simultaneous strengthening and toughening of the polymer nanocomposite was achieved with high specific tensile strength (up to 59.5 MPa g-1 cm3), elastic modulus (up to 2.6 GPa g-1 cm3), and fracture strain (up to 138 %). This work is a comprehensive investigation of all process steps involved in lignocellulosic nanomaterials production, from original residue feedstock to final product application.


Subject(s)
Nanostructures , Triticum , Lignin , Peracetic Acid , Plastics , Triticum/chemistry
8.
Proc Natl Acad Sci U S A ; 119(19): e2118597119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35522708

ABSTRACT

SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize. The newly developed laser-pumped X-ray nanodiffraction imaging technique reported here has simultaneous 100-ps temporal and 25-nm spatial resolutions. This approach reveals pathways of the nanoscale structural rearrangement upon ultrafast optical excitation, different from those transitions under slowly varying parameters. The spatiotemporally resolved structural characterization provides crucial nanoscopic insights into ultrafast phase transitions and opens opportunities for controlling nanoscale phases on ultrafast time scales.

9.
Biosens Bioelectron ; 197: 113786, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34801797

ABSTRACT

Rapid and accurate clinical assessment of hemostasis is essential for managing patients who undergo invasive procedures, experience hemorrhages, or receive antithrombotic therapies. Hemostasis encompasses an ensemble of interactions between the cellular and non-cellular blood components, but current devices assess only partial aspects of this complex process. In this work, we describe the development of a new approach to simultaneously evaluate coagulation function, platelet count or function, and hematocrit using a carbon nanotube-paper composite (CPC) capacitance sensor. CPC capacitance response to blood clotting at 1.3 MHz provided three sensing parameters with distinctive sensitivities towards multiple clotting elements. Whole blood-based hemostasis assessments were conducted to demonstrate the potential utility of the developed sensor for various hemostatic conditions, including pathological conditions, such as hemophilia and thrombocytopenia. Results showed good agreements when compared to a conventional thromboelastography. Overall, the presented CPC capacitance sensor is a promising new biomedical device for convenient non-contact whole-blood based comprehensive hemostasis evaluation.


Subject(s)
Biosensing Techniques , Blood Coagulation Disorders , Nanotubes, Carbon , Blood Coagulation , Hemostasis , Humans
10.
Nano Lett ; 21(20): 8554-8562, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34623164

ABSTRACT

As a 3D topological insulator, bismuth selenide (Bi2Se3) has potential applications for electrically and optically controllable magnetic and optoelectronic devices. Understanding the coupling with its topological phase requires studying the interactions of carriers with the lattice on time scales down to the subpicosecond regime. Here, we investigate the ultrafast carrier-induced lattice contractions and interlayer modulations in Bi2Se3 thin films by time-resolved diffraction using an X-ray free-electron laser. The lattice contraction depends on the carrier concentration and is followed by an interlayer expansion accompanied by oscillations. Using density functional theory and the Lifshitz model, the initial contraction can be explained by van der Waals force modulation of the confined free carrier layers. Our theoretical calculations suggest that the band inversion, related to a topological phase transition, is modulated by the expansion of the interlayer distance. These results provide insights into the topological phase control by light-induced structural change on ultrafast time scales.

11.
Phys Rev Lett ; 127(9): 097402, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506196

ABSTRACT

Optical excitation perturbs the balance of phenomena selecting the tilt orientation of domain walls within ferroelectric thin films. The high carrier density induced in a low-strain BaTiO_{3} thin film by an above-band-gap ultrafast optical pulse changes the tilt angle that 90° a/c domain walls form with respect to the substrate-film interface. The dynamics of the changes are apparent in time-resolved synchrotron x-ray scattering studies of the domain diffuse scattering. Tilting occurs at 298 K, a temperature at which the a/b and a/c domain phases coexist but is absent at 343 K in the better ordered single-phase a/c regime. Phase coexistence at 298 K leads to increased domain-wall charge density, and thus a larger screening effect than in the single-phase regime. The screening mechanism points to new directions for the manipulation of nanoscale ferroelectricity.

12.
ACS Appl Mater Interfaces ; 12(25): 28568-28575, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32453552

ABSTRACT

The continuous production of macroscale filaments of 17 µm in diameter comprising aligned TEMPO-oxidized cellulose nanofibrils (CNFs) is conducted using a field-assisted flow-focusing process. The effect of an AC external field on the material's structure becomes significant at a certain voltage, beyond which augmentations of the CNF orientation factor up to 16% are obtained. Results indicate that the electric field significantly contributes to improve the CNF ordering in the bulk, while the CNF alignment on the filament surface is only slightly affected by the applied voltage. X-ray diffraction shows that CNFs are densely packed anisotropically in the plane parallel to the filament axis without any preferential out of plane orientation. The improved nanoscale ordering combined with the tight CNF packing yields impressive enhancements in mechanical properties, with stiffness up to 25 GPa and more than 63% (up to 260 MPa), 46% (up to 2.8%), and 120% (up to 4.7 kJ/m3) increase in tensile strength, strain-to-failure, and toughness, respectively. This study demonstrates for the first time the control over the structural ordering of anisotropic nanoparticles in a dynamic system using an electric field, which can have important implications for the development of sustainable alternatives to synthetic textiles.

13.
Water Res ; 179: 115882, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32402862

ABSTRACT

Novel magnetic Ag@RF@Fe3O4 core-satellite (MCS) nanocomposites were prepared through in situ photoreduction upon bridging Fe(III) and Ag+ via hydroxyl groups in resorcinol formaldehyde (RF) resin by virtue of the coordination effect. The catalytic activity of MCS nanocomposites was evaluated based on catalytic 4-nitrophenol (4-NP) reduction with NaBH4 as the reducing agent. It was noteworthy that the MCS-3 was beneficial to obtain a superior reaction rate constant of 2.27 min-1 and a TOF up to 72.7 h-1. Moreover, the MCS could be easily recovered by applying an external magnetic field and was reused for five times without significantly decrease in catalytic activity. Kinetic and thermodynamic study revealed that catalytic 4-NP reduction using MCS nanocatalysts obeyed the Langmuir-Hinshelwood mechanism and was controlled by the diffusion rate of substrates. Overall, the immobilization of ultra-fine Ag nanoparticles and the extremely negative potentials around MCS nanocomposites, which were effective for the diffusion of reactants, synergistically accelerated the catalytic reduction reactions.


Subject(s)
Metal Nanoparticles , Nanocomposites , Catalysis , Ferric Compounds , Magnetic Phenomena , Nitrophenols , Oxidation-Reduction , Silver
14.
Nanomaterials (Basel) ; 10(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963846

ABSTRACT

Advances in nanoscale science and engineering are providing new opportunities to develop promising adsorbents for environmental remediation. Here, hybrid aerogels are assembled from cellulose nanofibrils (CNFs) and carbon nanomaterials to remove cationic dye methylene blue (MB) and anionic dye Congo red (CR) in single and binary systems. Two classes of carbon nanomaterials, carbon nanotubes (CNTs) and graphene nanoplates (GnPs), are incorporated into CNFs with various amounts, respectively. The adsorption, mechanics and structure properties of the hybrid aerogels are investigated and compared among different combinations. The results demonstrate CNF-GnP 3:1 hybrid exhibits the best performance among all composites. Regarding a single dye system, both dye adsorptions follow a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. The maximal adsorption capacities of CNF-GnP aerogels for MB and CR are 1178.5 mg g-1 and 585.3 mg g-1, respectively. CNF-GnP hybrid show a superior binary dye adsorption capacity than pristine CNF or GnP. Furthermore, nearly 80% of MB or CR can be desorbed from CNF-GNP using ethanol as the desorption agent, indicating the reusability of this hybrid material. Hence, the CNF-GnP aerogels show great promise as adsorption materials for wastewater treatment.

15.
Int J Biol Macromol ; 143: 85-92, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31811848

ABSTRACT

This research studies the surface enhanced Raman scattering (SERS) activity of cellulose nanofibrils (CNFs) hybridized with faceted silver nanoparticles (AgFNPs) for the detection of organic dyes in aqueous media. Faceted AgNPs were synthesized under environmentally benign conditions using TEMPO-oxidized CNFs as both shape-regulating, reducing and stabilizing agents. Small, zero valent, spherical AgNPs first formed on the CNF surface and transformed into larger and faceted AgNPs when reacting with H2O2 through a thermodynamically driven Ostwald ripening mechanism. The as-synthesized hybrids exhibited strong analytical enhancement in the Raman signal of methylene blue, up to 6.8 × 103 at 448 cm-1 with less than 32% spatial variations and 10% sample-to-sample variability, enabling the detection of dyes in water at the sub part-per million level. The origin of the SERS enhancement came from discrete hotspots of high silver content on the substrate, as characterized by spatially resolved laser ablation inductively coupled plasma mass spectrometry.


Subject(s)
Coloring Agents/analysis , Metal Nanoparticles/chemistry , Nanofibers/chemistry , Silver/chemistry , Spectrum Analysis, Raman , Cellulose/chemistry , Chromatography, Liquid , Mass Spectrometry , Metal Nanoparticles/ultrastructure , Nanofibers/ultrastructure , Spectrum Analysis, Raman/methods
16.
J Hazard Mater ; 384: 121283, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31585295

ABSTRACT

Wood is one of the most widely used construction materials but it is thermally degradable and combustible, which poses serious safety concerns. In this research, the high temperature and fire behavior of hydrothermally modified western hemlock, impregnated with carbon nanomaterials pre-adsorbed with alkali lignin, was examined by cone calorimetry, scanning electron microscopy, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. The hydrothermal treatment made the wood less hydrophilic, allowing the formation of a dense protective layer of carbon-rich additives on the external wood surface at low loading (5 wt%) after aqueous-phase vacuum impregnation. Results revealed that the unique combination of these two processes reduced the total heat release by up to 32%, diminished flame spread by 31%, decreased the average carbon dioxide yield by 12%, lowered the total mass loss by 10%, and significantly slowed the pyrolytic reactions of wood. This research has important implications for the development of valued-added wood products with superior fire safety from relatively low cost timbers, such as western hemlock.


Subject(s)
Carbon/chemistry , Fires/prevention & control , Flame Retardants , Nanostructures/chemistry , Wood/chemistry , Hot Temperature , Tsuga/chemistry
17.
J Synchrotron Radiat ; 26(Pt 6): 1956-1966, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31721741

ABSTRACT

The full radiation from the first harmonic of a synchrotron undulator (between 5 and 12 keV) at the Advanced Photon Source is microfocused using a stack of beryllium compound refractive lenses onto a fast-moving liquid jet and overlapped with a high-repetition-rate optical laser. This micro-focused geometry is used to perform efficient nonresonant X-ray emission spectroscopy on transient species using a dispersive spectrometer geometry. The overall usable flux achieved on target is above 1015 photons s-1 at 8 keV, enabling photoexcited systems in the liquid phase to be tracked with time resolutions from tens of picoseconds to microseconds, and using the full emission spectrum, including the weak valence-to-core signal that is sensitive to chemically relevant electronic properties.

18.
J Synchrotron Radiat ; 26(Pt 5): 1790-1796, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490171

ABSTRACT

A multimodal imaging instrument has been developed that integrates scanning near-field optical microscopy with nanofocused synchrotron X-ray diffraction imaging. The instrument allows for the simultaneous nanoscale characterization of electronic/near-field optical properties of materials together with their crystallographic structure, facilitating the investigation of local structure-property relationships. The design, implementation and operating procedures of this instrument are reported. The scientific capabilities are demonstrated in a proof-of-principle study of the insulator-metal phase transition in samarium sulfide (SmS) single crystals induced by applying mechanical pressure via a scanning tip. The multimodal imaging of an in situ tip-written region shows that the near-field optical reflectivity can be correlated with the heterogeneously transformed structure of the near-surface region of the crystal.

19.
Phys Rev Lett ; 123(4): 045703, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31491252

ABSTRACT

Above-band-gap optical illumination of compressively strained BiFeO_{3} induces a transient reversible transformation from a state of coexisting tilted tetragonal-like and rhombohedral-like phases to an untilted tetragonal-like phase. Time-resolved synchrotron x-ray diffraction reveals that the transformation is induced by an ultrafast optically induced lattice expansion that shifts the relative free energies of the tetragonal-like and rhombohedral-like phases. The transformation proceeds at interfaces between regions of the tetragonal-like phase and regions of a mixture of tilted phases, consistent with the motion of a phase boundary. The optically induced transformation demonstrates that there are new optically driven routes towards nanosecond-scale control of phase transformations in ferroelectrics and multiferroics.

20.
J Phys Condens Matter ; 31(31): 315401, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-30995634

ABSTRACT

The spin crossover (SCO) transitions at both the surface and over the entire volume of the [Fe{H2B(pz)2}2(bipy)] polycrystalline films on Al2O3 substrates have been studied, where pz = pyrazol-1-yl and bipy = 2,2'-bipyridine. For [Fe{H2B(pz)2}2(bipy)] films of hundreds of nm thick, magnetometry and x-ray absorption spectroscopy measurements show thermal hysteresis in the SCO transition with temperature, although the transition in bulk [Fe{H2B(pz)2}2(bipy)] occurs in a non-hysteretic fashion at 157 K. While the size of the crystallites in those films are similar, the hysteresis becomes more prominent in thinner films, indicating a significant effect of the [Fe{H2B(pz)2}2(bipy)]/Al2O3 interface. Bistability of spin states, which can be inferred from the thermal hysteresis, was directly observed using temperature-dependent x-ray diffraction; the crystallites behave as spin-state domains that coexist during the transition. The difference between the spin state of molecules at the surface of the [Fe{H2B(pz)2}2(bipy)] films and that of the molecules within the films, during the thermal cycle, indicates that both cooperative (intermolecular) effects and coordination are implicated in perturbations to the SCO transition.

SELECTION OF CITATIONS
SEARCH DETAIL