Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters










Publication year range
1.
Int J Biol Sci ; 20(8): 3173-3184, 2024.
Article in English | MEDLINE | ID: mdl-38904016

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges in terms of prognosis and treatment. Recent research has identified splicing deregulation as a new cancer hallmark. Herein, we investigated the largely uncharacterized alternative splicing profile and the key splicing factor SF3B1 in PDAC pancreatic cells and tissues as a potential discovery source of plausible drug targets and new predictive biomarkers of clinical outcome. The research involved a transcriptome-wide analysis, comparing profiles of splicing profiles in PDAC primary cells with normal ductal cells. This revealed more than 400 significant differential splicing events in genes involved in regulation of gene expression, primarily related to mRNA splicing, and metabolism of nucleic acids. PDAC cultures were highly sensitive to the SF3B1 modulators, E7107 and Pladienolide-B, showing IC50s in the low nanomolar range. These compounds induced apoptosis, associated to induction of the MCL-1/S splice variant. and reduced cell migration, associated to RON mis-splicing. In an orthotopic mouse model, E7107 showed promising results. Furthermore, we evaluated SF3B1 expression in specimens from 87 patients and found a significant association of SF3B1 expression with progression-free and overall survival. In conclusion, SF3B1 emerges as both a potential prognostic factor and therapeutic target in PDAC, impacting cell proliferation, migration, and apoptosis. These findings warrant future studies on this new therapeutic strategy against PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , RNA Splicing Factors , Humans , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Animals , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Prognosis , Phosphoproteins/metabolism , Phosphoproteins/genetics , Macrolides/therapeutic use , Macrolides/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , RNA Splicing , Alternative Splicing , Female , Cell Movement/genetics
2.
Drug Resist Updat ; 76: 101103, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38943828

ABSTRACT

Cell cycle dysregulation is a hallmark of cancer that promotes eccessive cell division. Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are key molecules in the G1-to-S phase cell cycle transition and are crucial for the onset, survival, and progression of breast cancer (BC). Small-molecule CDK4/CDK6 inhibitors (CDK4/6i) block phosphorylation of tumor suppressor Rb and thus restrain susceptible BC cells in G1 phase. Three CDK4/6i are approved for the first-line treatment of patients with advanced/metastatic hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) BC in combination with endocrine therapy (ET). Though this has improved the clinical outcomes for survival of BC patients, there is no established standard next-line treatment to tackle drug resistance. Recent studies suggest that CDK4/6i can modulate other distinct effects in both BC and breast stromal compartments, which may provide new insights into aspects of their clinical activity. This review describes the biochemistry of the CDK4/6-Rb-E2F pathway in HR+ BC, then discusses how CDK4/6i can trigger other effects in BC/breast stromal compartments, and finally outlines the mechanisms of CDK4/6i resistance that have emerged in recent preclinical studies and clinical cohorts, emphasizing the impact of these findings on novel therapeutic opportunities in BC.

3.
Bioorg Chem ; 150: 107589, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38941696

ABSTRACT

Extracellular vesicles (EVs) appear to play an important role in intercellular communication in various physiological processes and pathological conditions such as cancer. Like enveloped viruses, EVs can transport their contents into the nucleus of recipient cells, and a new intracellular pathway has been described to explain the nuclear shuttling of EV cargoes. It involves a tripartite protein complex consisting of vesicle-associated membrane protein-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3) and late endosome-associated Rab7 allowing late endosome entry into the nucleoplasmic reticulum. Rab7 binding to ORP3-VAP-A complex can be blocked by the FDA-approved antifungal drug itraconazole. Here, we design a new series of smaller triazole derivatives, which lack the dioxolane moiety responsible for the antifungal function, acting on the hydrophobic sterol-binding pocket of ORP3 and evaluate their structure-activity relationship through inhibition of VOR interactions and nuclear transfer of EV and HIV-1 cargoes. Our investigation reveals that the most effective compounds that prevent nuclear transfer of EV cargo and productive infection by VSV-G-pseudotyped HIV-1 are those with a side chain between 1 and 4 carbons, linear or branched (methyl) on the triazolone region. These potent chemical drugs could find clinical applications either for nuclear transfer of cancer-derived EVs that impact metastasis or viral infection.

4.
Mar Drugs ; 22(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535474

ABSTRACT

Biofilm-associated infections pose significant challenges in healthcare settings due to their resistance to conventional antimicrobial therapies. In the last decade, the marine environment has been a precious source of bioactive molecules, including numerous derivatives with antibiofilm activity. In this study, we reported the synthesis and the biological evaluation of a new series of twenty-two thiadiazopyrimidinone derivatives obtained by using a hybridization approach combining relevant chemical features of two important classes of marine compounds: nortopsentin analogues and Essramycin derivatives. The synthesized compounds were in vitro tested for their ability to inhibit biofilm formation and to disrupt mature biofilm in various bacterial strains. Among the tested compounds, derivative 8j exhibited remarkable dispersal activity against preformed biofilms of relevant Gram-positive and Gram-negative pathogens, as well as towards the fungus Candida albicans, showing BIC50 values ranging from 17 to 40 µg/mL. Furthermore, compound 8j was in vivo assayed for its toxicity and the anti-infective effect in a Galleria mellonella model. The results revealed a promising combination of anti-infective properties and a favorable toxicity profile for the treatment of severe chronic biofilm-mediated infections.


Subject(s)
Thiadiazoles , Biofilms , Biological Assay , Candida albicans , Hybridization, Genetic
5.
Future Med Chem ; 16(3): 271-289, 2024 02.
Article in English | MEDLINE | ID: mdl-38269431

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement , Drug Resistance, Neoplasm , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
6.
Molecules ; 28(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764226

ABSTRACT

The marine environment is an excellent source of molecules that have a wide structural diversity and a variety of biological activities. Many marine natural products (MNPs) have been established as leads for anticancer drug discovery. Most of these compounds are alkaloids, including several chemical subclasses. In this review, we focus on the bis-indolyl alkaloid Nortopsentins and their derivatives with antiproliferative properties. Nortopsentins A-C were found to exhibit in vitro cytotoxicity against the P388 murine leukaemia cell line. Their structural manipulation provided a wide range of derivatives with significant anti-tumour activity against human cell lines derived from different cancer types (bladder, colon, gastric, CNS, liver, lung, breast, melanoma, ovarian, pancreatic, prostate, pleural mesothelioma, renal, sarcoma, and uterus). In vivo assays on animal models also proved that Nortopsentins and related bis-indolyl compounds have potent anti-inflammatory activity. These remarks set the foundation for future investigations into the development of new Nortopsentin derivatives as new anticancer and anti-inflammatory agents.

7.
Mol Cancer ; 22(1): 138, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596643

ABSTRACT

The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.


Subject(s)
Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Neoplasms/drug therapy , Neoplasms/genetics
8.
Nat Commun ; 14(1): 4588, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563144

ABSTRACT

The mechanism of human immunodeficiency virus 1 (HIV-1) nuclear entry, required for productive infection, is not fully understood. Here, we report that in HeLa cells and activated CD4+ T cells infected with HIV-1 pseudotyped with VSV-G and native Env protein, respectively, Rab7+ late endosomes containing endocytosed HIV-1 promote the formation of nuclear envelope invaginations (NEIs) by a molecular mechanism involving the VOR complex, composed of the outer nuclear membrane protein VAP-A, hyperphosphorylated ORP3 and Rab7. Silencing VAP-A or ORP3 and drug-mediated impairment of Rab7 binding to ORP3-VAP-A inhibited the nuclear transfer of the HIV-1 components and productive infection. In HIV-1-resistant quiescent CD4+ T cells, ORP3 was not hyperphosphorylated and neither VOR complex nor NEIs were formed. This new cellular pathway and its molecular players are potential therapeutic targets, perhaps shared by other viruses that require nuclear entry to complete their life cycle.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/metabolism , HeLa Cells , CD4-Positive T-Lymphocytes/metabolism , Gene Products, env/metabolism , Membrane Proteins/metabolism
9.
Antioxidants (Basel) ; 12(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37627616

ABSTRACT

We here investigated the anti-inflammatory activity of a polymethoxylated flavone-containing fraction (PMFF) from Citrus sinensis and of a prenylflavonoid-containing one (PFF) from Humulus lupulus, either alone or in combination (MIX). To this end, an in vitro model of inflammatory bowel disease (IBD), consisting of differentiated, interleukin (IL)-1ß-stimulated Caco-2 cells, was employed. We demonstrated that non-cytotoxic concentrations of either PMFF or PFF or MIX reduced nitric oxide (NO) production while PFF and MIX, but not PMFF, also inhibited prostaglandin E2 release. Coherently, MIX suppressed both inducible NO synthase and cyclooxygenase-2 over-expression besides NF-κB activation. Moreover, MIX increased nuclear factor erythroid 2-related factor 2 (Nrf2) activation, heme oxygenase-1 expression, restoring GSH and reactive oxygen and nitrogen species (RONs) levels. Remarkably, these effects with MIX were stronger than those produced by PMFF or PFF alone. Noteworthy, nobiletin (NOB) and xanthohumol (XTM), two of the most represented phytochemicals in PMFF and PFF, respectively, synergistically inhibited RONs production. Overall, our results demonstrate that MIX enhances the anti-inflammatory and anti-oxidative effects of the individual fractions in a model of IBD, via a mechanism involving modulation of NF-κB and Nrf2 signalling. Synergistic interactions between NOB and XTM emerge as a relevant aspect underlying this evidence.

10.
Mar Drugs ; 21(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37504943

ABSTRACT

A new series of nortopsentin analogs, in which the central imidazole ring of the natural lead was replaced by a 1,3,4-oxadiazole or 1,3,4-thiadiazole moiety, was efficiently synthesized. The antiproliferative activity of all synthesized derivatives was evaluated against five pancreatic ductal adenocarcinoma (PDAC) cell lines, a primary culture and a gemcitabine-resistant variant. The five more potent compounds elicited EC50 values in the submicromolar-micromolar range, associated with a significant reduction in cell migration. Moreover, flow cytometric analysis after propidium iodide staining revealed an increase in the G2-M and a decrease in G1-phase, indicating cell cycle arrest, while a specific ELISA demonstrated the inhibition of CDK1 activity, a crucial regulator of cell cycle progression and cancer cell proliferation.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor , Apoptosis , CDC2 Protein Kinase/pharmacology , Pancreatic Neoplasms
11.
Mar Drugs ; 21(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37233482

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, invasion, and resistance to standard chemotherapeutic agents. Taking into account all these factors and the urgency in evaluating novel options to treat PDAC, in the present work we reported the synthesis of a new series of indolyl-7-azaindolyl triazine compounds inspired by marine bis-indolyl alkaloids. We first assessed the ability of the new triazine compounds to inhibit the enzymatic activity of pyruvate dehydrogenase kinases (PDKs). The results showed that most of derivatives totally inhibit PDK1 and PDK4. Molecular docking analysis was executed to predict the possible binding mode of these derivatives using ligand-based homology modeling technique. Evaluation of the capability of new triazines to inhibit the cell growth in 2D and 3D KRAS-wild-type (BxPC-3) and KRAS-mutant (PSN-1) PDAC cell line, was carried out. The results showed the capacity of the new derivatives to reduce cell growth with a major selectivity against KRAS-mutant PDAC PSN-1 on both cell models. These data demonstrated that the new triazine derivatives target PDK1 enzymatic activity and exhibit cytotoxic effects on 2D and 3D PDAC cell models, thus encouraging further structure manipulation for analogs development against PDAC.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Molecular Docking Simulation , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/pathology , Triazines/pharmacology , Cell Proliferation , Adenocarcinoma/metabolism , Pancreatic Neoplasms
12.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902301

ABSTRACT

Infectious diseases caused by antimicrobial-resistant strains have become a serious threat to global health, with a high social and economic impact. Multi-resistant bacteria exhibit various mechanisms at both the cellular and microbial community levels. Among the different strategies proposed to fight antibiotic resistance, we reckon that the inhibition of bacterial adhesion to host surfaces represents one of the most valid approaches, since it hampers bacterial virulence without affecting cell viability. Many different structures and biomolecules involved in the adhesion of Gram-positive and Gram-negative pathogens can be considered valuable targets for the development of promising tools to enrich our arsenal against pathogens.


Subject(s)
Anti-Bacterial Agents , Bacterial Adhesion , Anti-Bacterial Agents/pharmacology , Virulence , Bacteria , Drug Resistance, Microbial , Microbial Sensitivity Tests , Biofilms
13.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835086

ABSTRACT

Pyruvate dehydrogenase kinases (PDKs) are serine/threonine kinases, that are directly involved in altered cancer cell metabolism, resulting in cancer aggressiveness and resistance. Dichloroacetic acid (DCA) is the first PDK inhibitor that has entered phase II clinical; however, several side effects associated with weak anticancer activity and excessive drug dose (100 mg/kg) have led to its limitation in clinical application. Building upon a molecular hybridization approach, a small library of 3-amino-1,2,4-triazine derivatives has been designed, synthesized, and characterized for their PDK inhibitory activity using in silico, in vitro, and in vivo assays. Biochemical screenings showed that all synthesized compounds are potent and subtype-selective inhibitors of PDK. Accordingly, molecular modeling studies revealed that a lot of ligands can be properly placed inside the ATP-binding site of PDK1. Interestingly, 2D and 3D cell studies revealed their ability to induce cancer cell death at low micromolar doses, being extremely effective against human pancreatic KRAS mutated cancer cells. Cellular mechanistic studies confirm their ability to hamper the PDK/PDH axis, thus leading to metabolic/redox cellular impairment, and to ultimately trigger apoptotic cancer cell death. Remarkably, preliminary in vivo studies performed on a highly aggressive and metastatic Kras-mutant solid tumor model confirm the ability of the most representative compound 5i to target the PDH/PDK axis in vivo and highlighted its equal efficacy and better tolerability profile with respect to those elicited by the reference FDA approved drugs, cisplatin and gemcitabine. Collectively, the data highlights the promising anticancer potential of these novel PDK-targeting derivatives toward obtaining clinical candidates for combatting highly aggressive KRAS-mutant pancreatic ductal adenocarcinomas.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Small Molecule Libraries , Humans , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/drug effects , Proto-Oncogene Proteins p21(ras)/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Pancreatic Neoplasms
14.
Eur J Med Chem ; 249: 115134, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36709650

ABSTRACT

Among the different hallmarks of cancer, deregulation of cellular metabolism turned out to be an essential mechanism in promoting cancer resistance and progression. The pyruvate dehydrogenase kinases (PDKs) are well known as key regulators in cells metabolic process and their activity was found to be overexpressed in different metabolic alerted types of cancer, including the high aggressive pancreatic ductal adenocarcinoma (PDAC). To date few PDK inhibitors have been reported, and the different molecules developed are characterized by structural chemical diversity. In an attempt to find novel classes of potential PDK inhibitors, the molecular hybridization approach, which combine two or more active scaffolds in a single structure, was employed. Herein we report the synthesis and the pharmacological evaluation of the novel hybrid molecules, characterized by the fusion of three different pharmacophoric sub-units such as 1,2,4-amino triazines, 7-azaindoles and indoles, in a single structure. The synthesized derivatives demonstrated a promising ability in hampering the enzymatic activity of PDK1 and 4, further confirmed by docking studies. Interestingly, these derivatives retained a strong antiproliferative activity against pancreatic cancer cells either in 2D and 3D models. Mechanistic studies in highly aggressive PDAC cells confirmed their ability to hamper PDK axis and to induce cancer cell death by apoptosis. Moreover, in vivo translational studies in a murine syngeneic solid tumor model confirmed the ability of the most representative compounds to target the PDK system and highlight the ability to reduce the tumor growth without inducing substantial body weight changes in the treated mice.


Subject(s)
Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Animals , Mice , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms
15.
Int J Pharm ; 631: 122492, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36528190

ABSTRACT

The aim of this work was to produce an inhalable dry powder formulation of a new anti-biofilm compound (SC38). For this purpose, chitosan was used as a polymeric carrier and l-leucine as a dispersibility enhancer. SC38 was entrapped by spray-drying into previously optimized chitosan microparticles. The final formulation was fully characterized in vitro in terms of particle morphology, particle size and distribution, flowability, aerodynamic properties, anti-biofilm activity and effects on lung cell viability. The SC38-loaded chitosan microparticles exhibited favorable aerodynamic properties with emitted and respirable fractions higher than 80 % and 45 % respectively. The optimized formulation successfully inhibited biofilm formation at microparticle concentrations starting from 20 µg/mL for methicillin-sensitive and 100 µg/mL for methicillin-resistant Staphylococcus aureus and showed a relatively safe profile in lung cells after 72 h exposure. Future in vivo tolerability and efficacy studies are needed to unravel the potential of this novel formulation for the treatment of difficult-to-treat biofilm-mediated lung infections.


Subject(s)
Chitosan , Methicillin-Resistant Staphylococcus aureus , Powders , Drug Compounding , Administration, Inhalation , Lung , Indoles , Particle Size , Dry Powder Inhalers , Aerosols
16.
Cell Biol Int ; 47(3): 634-647, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36378586

ABSTRACT

Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Given the ability of tumors to interfere with multiple or different molecular pathways to promote angiogenesis, there is an increasing need to therapeutically block tumor progression by targeting multiple antiangiogenic pathways. Natural polyphenols present health-protective properties, which are likely attributed to their ability to activate multiple pathways involved in inflammation, carcinogenesis, and angiogenesis. Recently, increased attention has been addressed to the ability of flavonoids, the most abundant polyphenols in the diet, to prevent cancer by suppressing angiogenesis. Here we investigate the mechanisms by which xanthohumol (the major prenylated flavonoid of the hop plant Humulus lupulus L.) and nobiletin (flavonoid from red-orange Citrus sinensis) can modulate the effects of Tumor Necrosis Factor-α (TNF-α) on human umbilical vein endothelial cells (HUVEC). The results reported in this paper show that xanthohumol and nobiletin pretreatment of HUVEC inhibits the effects induced by TNF-α on cell migration, invasion capability, and colon cancer cell adhesion on the endothelial monolayer. Moreover, the pretreatment reduces metalloproteinases and adhesion molecules' expression. Finally, our results highlight that xanthohumol and nobiletin can counteract the effects of TNF-α on angiogenesis and invasiveness, mainly through Vascular Endothelial Growth Factor and NF-κB pathways. Since angiogenesis plays an important pathological role in the progression of several diseases, our findings may provide clues for developing xanthohumol and nobiletin as therapeutic agents against angiogenesis-associated diseases.


Subject(s)
NF-kappa B , Neoplasms , Humans , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Flavonoids/pharmacology , Signal Transduction , Neoplasms/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Polyphenols/metabolism , Polyphenols/pharmacology
18.
Molecules ; 27(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36364252

ABSTRACT

Natural products are an excellent source of inspiration for the development of new drugs. Among them, betalains have been extensively studied for their antioxidant properties and potential application as natural food dyes. Herein, we describe the seven-step synthesis of new betalamic acid analogs without carboxy groups in the 2- and 6-position with an overall yield of ~70%. The Folin-Ciocalteu assay was used to determine the antioxidant properties of protected intermediate 21. Additionally, the five-step synthesis of betalamic acid analog 35 with three ester moieties was performed. Using NMR techniques, the stability of the obtained compounds towards oxygen was analyzed.


Subject(s)
Antioxidants , Pyrrolidines , Antioxidants/pharmacology , Antioxidants/chemistry , Betalains/chemistry , Pyridines/chemistry
19.
Eur J Med Chem ; 234: 114233, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35286926

ABSTRACT

The enzyme glutaminase-1 (GLS-1) has shown a clear and coherent implication in the progression and exacerbation of different aggressive tumors such as glioblastoma, hepatocarcinoma, pancreas, bone, and triple-negative breast cancer. Few chemotypes are currently available as selective GLS-1 inhibitors, and still, fewer of them are at the clinical stage. In the present paper, starting from a naturally-inspired antitumor compound library, metabolomics has been used to putatively identify the molecular mechanism underlying biological activity. GLS-1 was identified as a potential target. Biochemical analysis confirmed the hypothesis leading to the identification of a new hit compound acting as a GLS-1 selective inhibitor (IC50 = 3.96 ± 1.05 µM), compared to the GLS-2 isoform (IC50 = 12.90 ± 0.87 µM), with remarkable antitumor potency over different aggressive tumor cell lines. Molecular modelling studies revealed new insight into the drug-target interaction providing robust SAR clues for the rational hit-to-lead development. The approach undertaken underlines the wide potential of metabolomics applied to drug discovery, particularly in target identification and hit discovery following phenotype screening.


Subject(s)
Glutaminase , Triple Negative Breast Neoplasms , Cell Line, Tumor , Humans , Metabolomics , Phenotype , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...