Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chest ; 162(3): 556-568, 2022 09.
Article in English | MEDLINE | ID: mdl-35271841

ABSTRACT

BACKGROUND: Twenty-five percent to 45% of COPD is caused by exposures other than active smoking. Secondhand tobacco smoke (SHS) has been suggested as an independent cause of COPD, based on its association with increased respiratory symptoms and a small decrease in lung function, but its impact on respiratory health and lung function after exposure cessation has not been explored. RESEARCH QUESTION: What are the consequences of airline SHS exposure on respiratory health and lung function decades after cessation? STUDY DESIGN AND METHODS: We performed a cohort study involving flight attendants because of their exposure to SHS that stopped > 20 years ago. We included subjects ≥ 50 years of age with > 1 year vs ≤ 1 year of airline SHS exposure (ie, exposed vs unexposed). Respiratory quality of life, as determined by the St. George's Respiratory Questionnaire (SGRQ), was the primary outcome for respiratory health. Key secondary outcomes included general quality of life (the Rand Corporation modification of the 36-item Short Form Health Survey Questionnaire; RAND-36), respiratory symptoms (COPD Assessment Test; CAT), and spirometry. RESULTS: The study enrolled 183 SHS-exposed and 59 unexposed subjects. Exposed subjects were 66.7 years of age, and 90.7% were female. They were hired at 23.8 years of age, were exposed to airline SHS for 16.1 years, and stopped exposure 27.5 years before enrollment. Prior SHS exposure was associated with worsened SGRQ (6.7 units; 95% CI, 2.7-10.7; P = .001), RAND-36 physical and social function, and CAT vs unexposed subjects. SHS exposure did not affect prebronchodilator spirometry or obstruction, but was associated with lower postbronchodilator FEV1 and FEV1/FVC, total lung capacity, and diffusing capacity of the lungs for carbon monoxide in a subset of subjects. Former smoking and SHS exposure synergistically worsened SGRQ (ß = 8.4; 95% CI, 0.4-16.4; P = .04). SHS exposure in people who never smoked replicated primary results and was associated with worsened SGRQ vs unexposed people (4.7 units; 95% CI, 0.7-7.0; P = .006). INTERPRETATION: Almost three decades after exposure ended, airline SHS exposure is strongly and dose-dependently associated with worsened respiratory health, but less robustly associated with airflow abnormalities used to diagnose COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Tobacco Smoke Pollution , Cohort Studies , Female , Humans , Lung , Male , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , Quality of Life , Tobacco Smoke Pollution/adverse effects
2.
Int Forum Allergy Rhinol ; 10(3): 303-313, 2020 03.
Article in English | MEDLINE | ID: mdl-31845512

ABSTRACT

BACKGROUND: Collection of biologic samples from the nasal cavity and paranasal sinuses is of critical importance to the study of infectious or inflammatory conditions that affect both upper and lower airways. Numerous techniques for the study of ex-vivo samples exist, with specific applications, strengths, and weaknesses associated with each of them. In this compendium we summarize the available methods for collection of primary human samples and incorporate expert discussion of the pros, cons, and applications associated with each technique. METHODS: An expert panel containing members of the American Rhinologic Society's Research and Grants Committee compiled this educational reference. Rationale for use and the potential advantages and disadvantages are discussed. Research protocols and key references are enumerated. RESULTS: Sampling of the nasal cavity and paranasal sinuses can be achieved through a number of methods. Nonspecific sinonasal secretions may be collected via forced exhalation, nasal lavage, and nasal spray aspiration. Targeted collection of sinonasal secretions may be achieved via endoscopic placement of absorbent matrices. Nasal cytology or collection of superficial epithelium may be completed via brushing or scraping of endonasal structures. Collection of mucosal biopsies may be completed via sinonasal explant or full-thickness biopsy. CONCLUSION: Multiple sampling techniques are available to collect biologic samples from the sinonasal cavity. These techniques differ in their ease of application, reproducibility, sample yield, and utility for different sinonasal pathologies or research goals. An appreciation of the benefits and drawbacks of each approach will allow investigators to select the techniques most appropriate for achieving research objectives.


Subject(s)
Nasal Cavity/pathology , Paranasal Sinuses/pathology , Specimen Handling , Cytological Techniques , Exosomes/metabolism , Humans , Nasal Lavage Fluid/cytology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Specimen Handling/instrumentation , Specimen Handling/methods , Specimen Handling/standards
SELECTION OF CITATIONS
SEARCH DETAIL