Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474280

ABSTRACT

Over the past decade, long non-coding RNAs (lncRNAs) have been recognized as key players in gene regulation, influencing genome organization and expression. The locus-specific binding of these non-coding RNAs (ncRNAs) to DNA involves either a non-covalent interaction with DNA-bound proteins or a direct sequence-specific interaction through the formation of RNA:DNA triplexes. In an effort to develop a novel strategy for characterizing a triple-helix formation, we employed atomic force microscopy (AFM) to visualize and study a regulatory RNA:DNA triplex formed between the Khps1 lncRNA and the enhancer of the proto-oncogene SPHK1. The analysis demonstrates the successful formation of RNA:DNA triplexes under various conditions of pH and temperature, indicating the effectiveness of the AFM strategy. Despite challenges in discriminating between the triple-helix and R-loop configurations, this approach opens new perspectives for investigating the role of lncRNAs in gene regulation at the single-molecule level.


Subject(s)
RNA, Long Noncoding , Base Sequence , Microscopy, Atomic Force , RNA, Long Noncoding/genetics , Nucleic Acid Conformation , DNA/chemistry
2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36835038

ABSTRACT

Regulation of histone acetylation dictates patterns of gene expression and hence cell identity. Due to their clinical relevance in cancer biology, understanding how human embryonic stem cells (hESCs) regulate their genomic patterns of histone acetylation is critical, but it remains largely to be investigated. Here, we provide evidence that acetylation of histone H3 lysine-18 (H3K18ac) and lysine-27 (H3K27ac) is only partially established by p300 in stem cells, while it represents the main histone acetyltransferase (HAT) for these marks in somatic cells. Our analysis reveals that whereas p300 marginally associated with H3K18ac and H3K27ac in hESCs, it largely overlapped with these histone marks upon differentiation. Interestingly, we show that H3K18ac is found at "stemness" genes enriched in RNA polymerase III transcription factor C (TFIIIC) in hESCs, whilst lacking p300. Moreover, TFIIIC was also found in the vicinity of genes involved in neuronal biology, although devoid of H3K18ac. Our data suggest a more complex pattern of HATs responsible for histone acetylations in hESCs than previously considered, suggesting a putative role for H3K18ac and TFIIIC in regulating "stemness" genes as well as genes associated with neuronal differentiation of hESCs. The results break ground for possible new paradigms for genome acetylation in hESCs that could lead to new avenues for therapeutic intervention in cancer and developmental diseases.


Subject(s)
Epigenesis, Genetic , Histone Acetyltransferases , Transcription Factors, TFIII , Humans , Acetylation , Embryonic Stem Cells , Epigenesis, Genetic/physiology , Histone Acetyltransferases/metabolism , Histones/metabolism , Lysine/metabolism , Transcription Factors, TFIII/metabolism
3.
Biochem Soc Trans ; 50(2): 723-736, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35285478

ABSTRACT

Recent investigations on the non-protein-coding transcriptome of human cells have revealed previously hidden layers of gene regulation relying on regulatory non-protein-coding (nc) RNAs, including the widespread ncRNA-dependent regulation of epigenetic chromatin states and of mRNA translation and stability. However, despite its centrality, the epigenetic regulation of ncRNA genes has received relatively little attention. In this mini-review, we attempt to provide a synthetic account of recent literature suggesting an unexpected complexity in chromatin-dependent regulation of ncRNA gene transcription by the three human nuclear RNA polymerases. Emerging common features, like the heterogeneity of chromatin states within ncRNA multigene families and their influence on 3D genome organization, point to unexplored issues whose investigation could lead to a better understanding of the whole human epigenomic network.


Subject(s)
Epigenesis, Genetic , RNA, Long Noncoding , Chromatin/genetics , Epigenomics , Humans , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics , Transcription Factors/genetics , Transcription, Genetic
4.
Biosystems ; 207: 104468, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34216714

ABSTRACT

In eukaryotes, RNA polymerase II (Pol II) is responsible for the synthesis of all mRNAs and myriads of short and long untranslated RNAs, whose fabrication involves close spatiotemporal coordination between transcription, RNA processing and chromatin modification. Crucial for such a coordination is an unusual C-terminal domain (CTD) of the Pol II largest subunit, made of tandem repetitions (26 in yeast, 52 in chordates) of the heptapeptide with the consensus sequence YSPTSPS. Although largely unstructured and with poor sequence content, the Pol II CTD derives its extraordinary functional versatility from the fact that each amino acid in the heptapeptide can be posttranslationally modified, and that different combinations of CTD covalent marks are specifically recognized by different protein binding partners. These features have led to propose the existence of a Pol II CTD code, but this expression is generally used by authors with some caution, revealed by the frequent use of quote marks for the word 'code'. Based on the theoretical framework of code biology, it is argued here that the Pol II CTD modification system meets the requirements of a true organic code, where different CTD modification states represent organic signs whose organic meanings are biological reactions contributing to the many facets of RNA biogenesis in coordination with RNA synthesis by Pol II. Importantly, the Pol II CTD code is instantiated by adaptor proteins possessing at least two distinct domains, one of which devoted to specific recognition of CTD modification profiles. Furthermore, code rules can be altered by experimental interchange of CTD recognition domains of different adaptor proteins, a fact arguing in favor of the arbitrariness, and thus bona fide character, of the Pol II CTD code. Since the growing family of CTD adaptors includes RNA binding proteins and histone modification complexes, the Pol II CTD code is by its nature integrated with other organic codes, in particular the splicing code and the histone code. These issues will be discussed taking into account fascinating developments in Pol II CTD research, like the discovery of novel modifications at non-consensus sites, the recently recognized CTD physicochemical properties favoring liquid-liquid phase separation, and the discovery that the Pol II CTD, originated before the divergence of most extant eukaryotic taxa, has expanded and diversified with developmental complexity in animals and plants.


Subject(s)
Histone Code/genetics , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Tandem Repeat Sequences/genetics , Transcription, Genetic/genetics , Amino Acid Sequence , Animals , Humans , Protein Domains/genetics , Protein Processing, Post-Translational/genetics
5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916983

ABSTRACT

Transcription factors regulate gene activity by binding specific regions of genomic DNA thanks to a subtle interplay of specific and nonspecific interactions that is challenging to quantify. Here, we exploit Reflective Phantom Interface (RPI), a label-free biosensor based on optical reflectivity, to investigate the binding of the N-terminal domain of Gal4, a well-known gene regulator, to double-stranded DNA fragments containing or not its consensus sequence. The analysis of RPI-binding curves provides interaction strength and kinetics and their dependence on temperature and ionic strength. We found that the binding of Gal4 to its cognate site is stronger, as expected, but also markedly slower. We performed a combined analysis of specific and nonspecific binding-equilibrium and kinetics-by means of a simple model based on nested potential wells and found that the free energy gap between specific and nonspecific binding is of the order of one kcal/mol only. We investigated the origin of such a small value by performing all-atom molecular dynamics simulations of Gal4-DNA interactions. We found a strong enthalpy-entropy compensation, by which the binding of Gal4 to its cognate sequence entails a DNA bending and a striking conformational freezing, which could be instrumental in the biological function of Gal4.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Transcription Factors/chemistry , Algorithms , Base Sequence , Binding Sites , DNA/metabolism , DNA-Binding Proteins/metabolism , Kinetics , Models, Molecular , Models, Theoretical , Molecular Conformation , Protein Binding , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship , Transcription Factors/metabolism
6.
Life (Basel) ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922141

ABSTRACT

Retrotransposons, a large and diverse class of transposable elements that are still active in humans, represent a remarkable force of genomic innovation underlying mammalian evolution. Among the features distinguishing mammals from all other vertebrates, the presence of a neocortex with a peculiar neuronal organization, composition and connectivity is perhaps the one that, by affecting the cognitive abilities of mammals, contributed mostly to their evolutionary success. Among mammals, hominids and especially humans display an extraordinarily expanded cortical volume, an enrichment of the repertoire of neural cell types and more elaborate patterns of neuronal connectivity. Retrotransposon-derived sequences have recently been implicated in multiple layers of gene regulation in the brain, from transcriptional and post-transcriptional control to both local and large-scale three-dimensional chromatin organization. Accordingly, an increasing variety of neurodevelopmental and neurodegenerative conditions are being recognized to be associated with retrotransposon dysregulation. We review here a large body of recent studies lending support to the idea that retrotransposon-dependent evolutionary novelties were crucial for the emergence of mammalian, primate and human peculiarities of brain morphology and function.

7.
Mol Cell ; 77(3): 475-487.e11, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31759822

ABSTRACT

How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.


Subject(s)
Alu Elements/physiology , Histones/metabolism , Transcription Factors, TFIII/metabolism , Acetylation , Alu Elements/genetics , Cell Line , Chromatin/metabolism , Chromatin/physiology , Epigenesis, Genetic/genetics , Gene Expression Regulation/genetics , Histones/genetics , Homeodomain Proteins/genetics , Humans , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational , RNA Polymerase III/metabolism , Transcription Factors, TFIII/genetics , Transcription, Genetic/genetics
8.
Int J Mol Sci ; 20(13)2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31284509

ABSTRACT

Alu retroelements, whose retrotransposition requires prior transcription by RNA polymerase III to generate Alu RNAs, represent the most numerous non-coding RNA (ncRNA) gene family in the human genome. Alu transcription is generally kept to extremely low levels by tight epigenetic silencing, but it has been reported to increase under different types of cell perturbation, such as viral infection and cancer. Alu RNAs, being able to act as gene expression modulators, may be directly involved in the mechanisms determining cellular behavior in such perturbed states. To directly address the regulatory potential of Alu RNAs, we generated IMR90 fibroblasts and HeLa cell lines stably overexpressing two slightly different Alu RNAs, and analyzed genome-wide the expression changes of protein-coding genes through RNA-sequencing. Among the genes that were upregulated or downregulated in response to Alu overexpression in IMR90, but not in HeLa cells, we found a highly significant enrichment of pathways involved in cell cycle progression and mitotic entry. Accordingly, Alu overexpression was found to promote transition from G1 to S phase, as revealed by flow cytometry. Therefore, increased Alu RNA may contribute to sustained cell proliferation, which is an important factor of cancer development and progression.


Subject(s)
Alu Elements/genetics , Cell Cycle Proteins/genetics , Cell Cycle/genetics , Fibroblasts/metabolism , Gene Expression Regulation , RNA/genetics , Base Sequence , Cell Cycle Proteins/metabolism , Genetic Loci , Genome, Human , HeLa Cells , Humans , RNA/metabolism
9.
Emerg Top Life Sci ; 3(4): 343-355, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-33523206

ABSTRACT

In the last two decades, we have witnessed an impressive crescendo of non-coding RNA studies, due to both the development of high-throughput RNA-sequencing strategies and an ever-increasing awareness of the involvement of newly discovered ncRNA classes in complex regulatory networks. Together with excitement for the possibility to explore previously unknown layers of gene regulation, these advancements led to the realization of the need for shared criteria of data collection and analysis and for novel integrative perspectives and tools aimed at making biological sense of very large bodies of molecular information. In the last few years, efforts to respond to this need have been devoted mainly to the regulatory interactions involving ncRNAs as direct or indirect regulators of protein-coding mRNAs. Such efforts resulted in the development of new computational tools, allowing the exploitation of the information spread in numerous different ncRNA data sets to interpret transcriptome changes under physiological and pathological cell responses. While experimental validation remains essential to identify key RNA regulatory interactions, the integration of ncRNA big data, in combination with systematic literature mining, is proving to be invaluable in identifying potential new players, biomarkers and therapeutic targets in cancer and other diseases.

10.
Article in English | MEDLINE | ID: mdl-29649143

ABSTRACT

Benzene, a known human carcinogen, and methyl tert-butyl ether (MTBE), not classifiable as to its carcinogenicity, are fuel-related pollutants. This study investigated the effect of these chemicals on epigenetic and transcriptional alterations in DNA repetitive elements. In 89 petrol station workers and 90 non-occupationally exposed subjects the transcriptional activity of retrotransposons (LINE-1, Alu), the methylation on repeated-element DNA, and of H3K9 histone, were investigated in peripheral blood lymphocytes. Median work shift exposure to benzene and MTBE was 59 and 408 µg/m³ in petrol station workers, and 4 and 3.5 µg/m³, in controls. Urinary benzene (BEN-U), S-phenylmercapturic acid, and MTBE were significantly higher in workers than in controls, while trans,trans-muconic acid (tt-MA) was comparable between the two groups. Increased BEN-U was associated with increased Alu-Y and Alu-J expression; moreover, increased tt-MA was associated with increased Alu-Y and Alu-J and LINE-1 (L1)-5'UTR expression. Among repetitive element methylation, only L1-Pa5 was hypomethylated in petrol station workers compared to controls. While L1-Ta and Alu-YD6 methylation was not associated with benzene exposure, a negative association with urinary MTBE was observed. The methylation status of histone H3K9 was not associated with either benzene or MTBE exposure. Overall, these findings only partially support previous observations linking benzene exposure with global DNA hypomethylation.


Subject(s)
Alu Elements/genetics , Benzene/analysis , Methyl Ethers/urine , Occupational Exposure/analysis , Oil and Gas Industry , Acetylcysteine/analogs & derivatives , Acetylcysteine/urine , Adult , Biomarkers , Humans , Male , Middle Aged , Site-Specific DNA-Methyltransferase (Adenine-Specific) , Sorbic Acid/analogs & derivatives , Sorbic Acid/analysis
12.
Transcription ; 8(4): 254-260, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28448767

ABSTRACT

In Saccharomyces cerevisiae, a group of more than 200 co-regulated genes (Ribi genes) is involved in ribosome biogenesis. This regulon has recently been shown to rely on a small set of transcriptional regulators (mainly Abf1, but also Reb1, Tbf1 and Rap1) previously referred to as general regulatory factors (GRFs) because of their widespread binding and action at many promoters and other specialized genomic regions. Intriguingly, Abf1 binding to Ribi genes is differentially modulated in response to distinct nutrition signaling pathways. Such a dynamic promoter association has the potential to orchestrate both activation and repression of Ribi genes in synergy with neighboring regulatory sites and through the functional interplay of histone acetyltransferases and deacetylases.


Subject(s)
Ribosomes/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
13.
Nucleic Acids Res ; 45(8): 4493-4506, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28158860

ABSTRACT

Ribosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters. Abf1/Reb1/Tbf1 promoter association was required for full Ribi gene expression in rich medium and for its modulation in response to glucose starvation, characterized by a rapid drop followed by slow recovery. Such a response did not entail changes in Abf1 occupancy, but it was paralleled by a quick increase, followed by slow decrease, in Rpd3L histone deacetylase occupancy. Remarkably, Abf1 site disruption also abolished Rpd3L complex recruitment in response to starvation. Extensive mutational analysis of the DBP7 promoter revealed a complex interplay of Tbf1 sites, PAC and RRPE in the transcriptional regulation of this Ribi gene. Our observations point to GRFs as new multifaceted players in Ribi gene regulation both during exponential growth and under repressive conditions.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal , Ribosomes/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Culture Media/chemistry , Culture Media/pharmacology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Glucose/deficiency , Glucose/pharmacology , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Organelle Biogenesis , Promoter Regions, Genetic , Regulon , Ribosomes/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic
14.
Noncoding RNA ; 3(1)2017 Mar 21.
Article in English | MEDLINE | ID: mdl-29657287

ABSTRACT

Short Interspersed Element (SINE) retrotransposons are one of the most abundant DNA repeat elements in the human genome. They have been found to impact the expression of protein-coding genes, but the possible roles in cell physiology of their noncoding RNAs, generated by RNA polymerase (Pol) III, are just starting to be elucidated. For this reason, Short Interspersed Element (SINE) expression profiling is becoming mandatory to obtain a comprehensive picture of their regulatory roles. However, their repeated nature and frequent location within Pol II-transcribed genes represent a serious obstacle to the identification and quantification of genuine, Pol III-derived SINE transcripts at single-locus resolution on a genomic scale. Among the recent Next Generation Sequencing technologies, only RNA sequencing (RNA-Seq) holds the potential to solve these issues, even though both technical and biological matters need to be taken into account. A bioinformatic pipeline has been recently set up that, by exploiting RNA-seq features and knowledge of SINE transcription mechanisms, allows for easy identification and profiling of transcriptionally active genomic loci which are a source of genuine Pol III SINE transcripts.

15.
DNA Res ; 24(1): 59-69, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28028040

ABSTRACT

With more than 500,000 copies, mammalian-wide interspersed repeats (MIRs), a sub-group of SINEs, represent ∼2.5% of the human genome and one of the most numerous family of potential targets for the RNA polymerase (Pol) III transcription machinery. Since MIR elements ceased to amplify ∼130 myr ago, previous studies primarily focused on their genomic impact, while the issue of their expression has not been extensively addressed. We applied a dedicated bioinformatic pipeline to ENCODE RNA-Seq datasets of seven human cell lines and, for the first time, we were able to define the Pol III-driven MIR transcriptome at single-locus resolution. While the majority of Pol III-transcribed MIR elements are cell-specific, we discovered a small set of ubiquitously transcribed MIRs mapping within Pol II-transcribed genes in antisense orientation that could influence the expression of the overlapping gene. We also identified novel Pol III-transcribed ncRNAs, deriving from transcription of annotated MIR fragments flanked by unique MIR-unrelated sequences, and confirmed the role of Pol III-specific internal promoter elements in MIR transcription. Besides demonstrating widespread transcription at these retrotranspositionally inactive elements in human cells, the ability to profile MIR expression at single-locus resolution will facilitate their study in different cell types and states including pathological alterations.


Subject(s)
Interspersed Repetitive Sequences , Computational Biology , Gene Expression Profiling , HeLa Cells , Humans , Plasmids , Retroelements , Sequence Analysis, RNA , Transcription, Genetic
16.
Curr Genet ; 63(1): 65-68, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27262581

ABSTRACT

In Saccharomyces cerevisiae, the large majority of the genes coding for cytoplasmic ribosomal proteins (RPs) depend on the general regulatory factor Rap1 for their transcription, but a small cohort of them relies on Abf1 regulatory activity. A recent study showed that unlike Rap1, whose association with RP gene promoters is not affected by environmental changes causing RP gene repression/reactivation, Abf1 association with both RP gene and ribosome biogenesis (Ribi) gene promoters dynamically responds to changes in growth conditions. This observation changes the paradigm of general regulatory factors as relatively static DNA-binding proteins constitutively bound to highly active promoters, and point to Abf1, which binds hundreds of non-RPG promoters within the yeast genome, as a possible key regulatory switch in nutrient- and stress-dependent transcriptional modulation. Moreover, the frequent presence of Abf1 binding sites in the promoters of mitochondrial RP genes evokes the possibility that Abf1 might orchestrate still unexplored levels of co-regulation involving growth-related gene networks in yeast cells.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Ribosomes/metabolism , Transcription Factors/metabolism , Yeasts/physiology , Binding Sites , Promoter Regions, Genetic , Protein Binding , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/metabolism
17.
Biochem Biophys Res Commun ; 474(4): 691-695, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27154225

ABSTRACT

Hydroquinone (HQ) is an important benzene-derived metabolite associated with acute myelogenous leukemia risk. Although altered DNA methylation has been reported in both benzene-exposed human subjects and HQ-exposed cultured cells, the inventory of benzene metabolite effects on the epigenome is only starting to be established. In this study, we used a monocytic leukemia cell line (THP-1) and hematopoietic stem cells (HSCs) from cord blood to investigate the effects of HQ treatment on the expression of the three most important families of retrotransposons in the human genome: LINE-1, Alu and Endogenous retroviruses (HERVs), that are normally subjected to tight epigenetic silencing. We found a clear tendency towards increased retrotransposon expression in response to HQ exposure, more pronounced in the case of LINE-1 and HERV. Such a partial loss of silencing, however, was generally not associated with HQ-induced DNA hypomethylation. On the other hand, retroelement derepression was also observed in the same cells in response to the hypomethylating agent decitabine. These observations suggest the existence of different types of epigenetic switches operating at human retroelements, and point to retroelement activation in response to benzene-derived metabolites as a novel factor deserving attention in benzene carcinogenesis studies.


Subject(s)
DNA Methylation/genetics , DNA/genetics , Hematopoietic Stem Cells/physiology , Hydroquinones/administration & dosage , Leukemia/genetics , Retroelements/genetics , Cell Line , DNA Methylation/drug effects , Dose-Response Relationship, Drug , Hematopoietic Stem Cells/drug effects , Humans , Retroelements/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
18.
Nucleic Acids Res ; 44(13): 6113-26, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27016735

ABSTRACT

In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control.


Subject(s)
DNA-Binding Proteins/genetics , Promoter Regions, Genetic , Ribosomal Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic , Binding Sites , DNA-Binding Proteins/metabolism , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , Telomere-Binding Proteins/genetics , Trans-Activators/genetics , Transcription Factors/metabolism
20.
Nat Commun ; 6: 6424, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25752840

ABSTRACT

It has been observed that concentrated solutions of short DNA oligomers develop liquid crystal ordering as the result of a hierarchically structured supramolecular self-assembly. In mixtures of oligomers with various degree of complementarity, liquid crystal microdomains are formed via the selective aggregation of those oligomers that have a sufficient degree of duplexing and propensity for physical polymerization. Here we show that such domains act as fluid and permeable microreactors in which the order-stabilized molecular contacts between duplex terminals serve as physical templates for their chemical ligation. In the presence of abiotic condensing agents, liquid crystal ordering markedly enhances ligation efficacy, thereby enhancing its own phase stability. The coupling between order-templated ligation and selectivity provided by supramolecular ordering enables an autocatalytic cycle favouring the growth of DNA chains, up to biologically relevant lengths, from few-base long oligomers. This finding suggests a novel scenario for the abiotic origin of nucleic acids.


Subject(s)
DNA/biosynthesis , Models, Molecular , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/metabolism , DNA/chemistry , Electrophoresis, Polyacrylamide Gel , Image Processing, Computer-Assisted , Liquid Crystals/chemistry , Microscopy, Fluorescence , Oligonucleotides/genetics , Origin of Life , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...