Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Elife ; 122024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163103

ABSTRACT

Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.


Subject(s)
Blood Platelets , Cell Differentiation , Oligodendrocyte Precursor Cells , Remyelination , Animals , Oligodendrocyte Precursor Cells/physiology , Remyelination/physiology , Mice , Blood Platelets/physiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Disease Models, Animal , Oligodendroglia/physiology , Female
SELECTION OF CITATIONS
SEARCH DETAIL