Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(39): 25570-25577, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36199324

ABSTRACT

We describe the investigation of metal halide perovskite layers, particularly CH3NH3PbI3 used in photovoltaic applications, by soft X-ray scanning transmission X-ray microscopy (STXM). Relevant reference spectra were used to fit the experimental data using singular value decomposition. The distribution of key elements Pb, I, and O was determined throughout the layer stack of two samples prepared by wet process. One sample was chosen to undergo electrical biasing. Spectral data shows the ability of STXM to provide relevant chemical information for these samples. We found the results to be in good agreement with the sample history, both regarding the deposition sequence and the degradation of the perovskite material.

2.
ACS Omega ; 7(9): 7541-7549, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35284724

ABSTRACT

Silicon phthalocyanines (SiPcs) are promising, inexpensive, and easy to synthesize non-fullerene acceptor (NFA) candidates for all-solution sequentially processed layer-by-layer (LbL) organic photovoltaic (OPV) devices. Here, we report the use of bis(tri-n-butylsilyl oxide) SiPc ((3BS)2-SiPc) paired with poly(3-hexylthiophene) (P3HT) and poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) donors in an LbL OPV structure. Using a direct architecture, P3HT/(3BS)2-SiPc LbL devices show power conversion efficiencies (PCEs) up to 3.0%, which is comparable or better than the corresponding bulk heterojunction (BHJ) devices with either (3BS)2-SiPc or PC61BM. PBDB-T/(3BS)2-SiPc LbL devices resulted in PCEs up to 3.3%, with an impressive open-circuit voltage (V oc) as high as 1.06 V, which is among the highest V oc obtained employing the LbL approach. We also compared devices incorporating vanadium oxide (VOx) or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole transporting layer and found that VOx modified the donor layer morphology and led to improved V oc. Probing the composition as a function of film layer depths revealed a similar distribution of active material for both BHJ and LbL structures when using (3BS)2-SiPc as an NFA. These findings suggest that (3BS)2-SiPc is a promising NFA that can be processed using the LbL technique, an inherently easier fabrication methodology for large-area production of OPVs.

SELECTION OF CITATIONS
SEARCH DETAIL
...