Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Food Res Int ; 186: 114401, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729704

Fuzhuan brick tea (FBT) fungal fermentation is a key factor in achieving its unique dark color, aroma, and taste. Therefore, it is essential to develop a rapid and reliable method that could assess its quality during FBT fermentation process. This study focused on using electronic nose (e-nose) and spectroscopy combination with sensory evaluations and physicochemical measurements for building machine learning (ML) models of FBT. The results showed that the fused data achieved 100 % accuracy in classifying the FBT fermentation process. The SPA-MLR method was the best prediction model for FBT quality (R2 = 0.95, RMSEP = 0.07, RPD = 4.23), and the fermentation process was visualized. Where, it was effectively detecting the degree of fermentation relationship with the quality characteristics. In conclusion, the current study's novelty comes from the established real-time method that could sensitively detect the unique post-fermentation quality components based on the integration of spectral, and e-nose and ML approaches.


Electronic Nose , Fermentation , Spectroscopy, Near-Infrared , Taste , Tea , Tea/chemistry , Tea/microbiology , Spectroscopy, Near-Infrared/methods , Odorants/analysis , Chemometrics/methods , Humans , Fungi/metabolism , Machine Learning , Volatile Organic Compounds/analysis
2.
Front Nutr ; 9: 931060, 2022.
Article En | MEDLINE | ID: mdl-35978960

Obesity induced by a high-fat diet (HFD) is an increasing global health problem, leading to many metabolic syndromes. As the emerging food additive rich in tea polyphenols, theanine, caffeine, and so on, matcha green tea has gained more and more popularity for its outstanding potential in ameliorating metabolic disorders. This study investigated the composition and antioxidant activity of matcha green tea and further explored its effects on gut-liver axis homeostasis in an HFD-induced obese mouse model. Male (7-8 weeks old) C57BL/6J mice were divided into four groups with the following dietary supplementation for 8 weeks: a normal chow diet (NCD), a normal chow diet+1.0% matcha (NCM), a high-fat diet (HFD), and a high-fat diet+1.0% matcha (HFM). The results demonstrated that matcha green tea ameliorated the development of obesity, lipid accumulation, and hepatic steatosis induced by HFD. Subsequently, dietary matcha supplementation restored the alterations in fecal bile acid profile and gut microbial composition. Meanwhile, the levels of mRNA expression in hepatocytes demonstrated that matcha intervention made significant regulatory on the multiple metabolic pathways of hosts involved in glucose, lipid, and bile acid metabolism. These findings present new evidence for matcha green tea as an effective nutritional strategy to mitigate obesity and relevant metabolic disorders through the gut-liver axis.

3.
Nutrients ; 13(6)2021 Jun 06.
Article En | MEDLINE | ID: mdl-34204055

Lately, matcha green tea has gained popularity as a beverage and food additive. It has proved to be effective in preventing obesity and related metabolic syndromes. However, the underlying mechanisms of its control effects against non-alcoholic fatty liver disease (NAFLD) are complicated and remain elusive. In the present study, we performed an in vivo experiment using male C57BL/6 mice fed with a high-fat diet and simultaneously treated with matcha for six weeks. Serum biochemical parameters, histological changes, lipid accumulation, inflammatory cytokines, and relevant indicators were examined. Dietary supplementation of matcha effectively prevented excessive accumulation of visceral and hepatic lipid, elevated blood glucose, dyslipidemia, abnormal liver function, and steatosis hepatitis. RNA sequencing analyses of differentially expressed genes in liver samples indicated that matcha treatment decreased the activity of lipid droplet-associated proteins and increased the activity of cytochrome P450 enzymes, suggesting improved metabolic capacity and liver function. The current study provided evidence for new dietary strategies based on matcha supplementation to ameliorate lipotoxicity-induced obesity and NALFD.


Antioxidants/administration & dosage , Lipid Metabolism/physiology , Non-alcoholic Fatty Liver Disease/therapy , Obesity/therapy , Tea , Animals , Blood Glucose/metabolism , Cytochrome P-450 Enzyme System/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements , Disease Models, Animal , Dyslipidemias/metabolism , Inflammation , Liver/metabolism , Liver Function Tests , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/etiology , Obesity/etiology
...