Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
BMC Genom Data ; 25(1): 41, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711007

BACKGROUND: Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS: We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS: In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.


Gene Expression Regulation, Plant , Phylogeny , Plant Growth Regulators , Pyrus , Pyrus/genetics , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Melatonin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Peroxidase/genetics , Peroxidase/metabolism , Acetates/pharmacology , Acetates/metabolism , Fruit/genetics , Fruit/growth & development
2.
BMC Genom Data ; 25(1): 22, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383301

OBJECTIVES: Pb stress has a negative impact on plant growth by interfering with photosynthesis and releasing reactive oxygen species, causing major risks such as heavy metal ion accumulation in the soil matrix. A proteomics experiment was conducted to determine whether protein levels of Dendrobium huoshanense changed in response to Pb stress seven to fifteen days after being sprayed with a 200 mg/L Pb (NO3)2 solution. The proteomic data we gathered provides a model for investigations into the mechanisms underlying Dendrobium plant resistance to heavy metal stress. DATA DESCRIPTION: A label-free quantitative proteomics approach was employed to examine the variations in protein expression levels of D. huoshanense at different times of Pb(NO3)2 treatment. We submitted the raw data obtained from these proteomics sequencing experiments to the ProteomeXchange database with the accession number PXD047050. 63,194 mass spectra in total were compared after being imported into the Proteome Discoverer software for database search. A total of 12,402 spectral peptides were identified with a confidence level exceeding 99%, which resulted in the identification of 2,449 significantly differential proteins. These proteins can be utilized for screening, functional annotation, and enrichment analysis of differentially expressed proteins before and after heavy metal treatment experiments.


Dendrobium , Metals, Heavy , Dendrobium/metabolism , Lead/metabolism , Proteomics , Metals, Heavy/metabolism
4.
Food Sci Nutr ; 10(10): 3475-3484, 2022 Oct.
Article En | MEDLINE | ID: mdl-36249963

Fenugreek seeds (Trigonella foenum-graecum L.), one kind of traditional Chinese medicine, are reported to be of great potential as a new alternative in terms of their bioactive components. In our present study, an ultrasonic-assisted method was applied in the extraction of antioxidative components from fenugreek seeds. Four factors: ethanol concentration, liquid-solid ratio, sonication time, and sonication power were selected and multiple responses were studied using the response surface methodology (RSM). The effects of factors along with the correlation between all responses (flavonoids content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, OH- assay) were studied. The regression model indicated that all four factors are of significant effect on all responses. The model predicted that the ethanol concentration of 72%, solvent-to-material ratio of 35 ml/g, ultrasonic time of 41 min, and 500 W of power would provide a flavonoid yield of 9.10 mg/g, DPPH clearance of 80.33%, and OH- clearance of 24.28%, respectively. The confirmation test showed the closeness of the predicted results with those of experimental values. And AB-8 resin was successfully used to purify the fenuellus hulusi seed extract, and the flavonoid concentration of 78.14% was obtained. Six flavonoids (Swertisin, Puerarin apioside, Jasminoside B, Astragalin, Apigenin-7-O-beta-D-glucoside, and Apiin) were successfully identified by the liquid chromatography-mass spectrometry (LC-MS) analysis.

5.
Mol Pharmacol ; 102(3): 172-182, 2022 09.
Article En | MEDLINE | ID: mdl-35798366

Human and animal malaria parasites increase their host erythrocyte permeability to a broad range of solutes as mediated by parasite-associated ion channels. Molecular and pharmacological studies have implicated an essential role in parasite nutrient acquisition, but inhibitors suitable for development of antimalarial drugs are missing. Here, we generated a potent and specific drug lead using Plasmodium falciparum, a virulent human pathogen, and derivatives of MBX-2366, a nanomolar affinity pyridazinone inhibitor from a high-throughput screen. As this screening hit lacks the bioavailability and stability needed for in vivo efficacy, we synthesized 315 derivatives to optimize drug-like properties, establish target specificity, and retain potent activity against the parasite-induced permeability. Using a robust, iterative pipeline, we generated MBX-4055, a derivative active against divergent human parasite strains. MBX-4055 has improved oral absorption with acceptable in vivo tolerability and pharmacokinetics. It also has no activity against a battery of 35 human channels and receptors and is refractory to acquired resistance during extended in vitro selection. Single-molecule and single-cell patch-clamp indicate direct action on the plasmodial surface anion channel, a channel linked to parasite-encoded RhopH proteins. These studies identify pyridazinones as novel and tractable antimalarial scaffolds with a defined mechanism of action. SIGNIFICANCE STATEMENT: Because antimalarial drugs are prone to evolving resistance in the virulent human P. falciparum pathogen, new therapies are needed. This study has now developed a novel drug-like series of pyridazinones that target an unexploited parasite anion channel on the host cell surface, display excellent in vitro and in vivo ADME properties, are refractory to acquired resistance, and demonstrate a well defined mechanism of action.


Antimalarials , Folic Acid Antagonists , Animals , Anions/chemistry , Anions/metabolism , Antimalarials/pharmacology , Erythrocytes/metabolism , Humans , Nutrients , Plasmodium falciparum/metabolism
6.
J Biomed Mater Res B Appl Biomater ; 110(8): 1887-1898, 2022 08.
Article En | MEDLINE | ID: mdl-35262282

Bacterial infections can cause many human diseases, which are closely related to people's health. Nowadays, antibiotics are mainly used to treat bacterial infections, but the widespread use of antibiotics can also lead to bacterial resistance. Therefore, effective treatment of bacterial infections is an urgent problem to be solved. In this article, a multifunctional therapeutic material with antibacterial properties was designed and synthesized. First, the porous media material ZIF-8 was synthesized, and applied to load hesperidin. When the load is completed, a layer of hyaluronic acid (HA) is uniformly wrapped on surface of the material. Such materials have high stability and high drug-carrying capacity, and can be slowly released in vivo. The HA coated on surface can also promote penetration of active ingredients into cells and give full play to antibacterial ability. Results of in vitro and in vivo antibacterial tests show that synergy between the materials enhances antibacterial activity which is related to dose. The material achieves high-efficiency antibacterial effects by increasing the permeability of cell membranes and destroying the integrity of bacteria. At same time, the material does not show obvious side effects. Therefore, the material seems to be a promising antibacterial agent with good biocompatibility and strong antibacterial activity.


Bacterial Infections , Metal-Organic Frameworks , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Excipients , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Hyaluronic Acid/pharmacology , Metal-Organic Frameworks/therapeutic use , Sterilization
7.
J Mater Chem B ; 9(18): 3808-3825, 2021 05 12.
Article En | MEDLINE | ID: mdl-33979422

Photodynamic antibacterial therapy employs nanocomposites as an alternative to traditional antibiotics for the treatment of bacterial infections. However, many of these antibacterial materials are less effective towards bacteria than traditional drugs, either due to poor specificity or antibacterial activity. This can result in needless and excessive drug use in treatments. This paper describes a multifunctional drug delivery nanoparticle (MDD-NP), Sph-Ru-MMT@PZ, based on the nanostructured-form of [Ru(bpy)2dppz] (PF6)2 (Sph-Ru), which has adhesive properties towards its microbial targets as well as surface-anchoring photosensitizer effects. The design and construction of MDD-NP is based on the adhesive properties of the outer layers of montmorillonite (MMT), which allows Sph-Ru-MMT@PZ to successfully reach its bacterial target; the outer layer of the E. coli. In addition, under 670 nm red irradiation therapy (R-IT), the surface-anchoring properties use the photosensitizer phthalocyanine zinc (PZ) to destroy the bacteria by producing reactive oxygen species (ROS) which causes cell lysis of E. coli. More importantly, Sph-Ru-MMT@PZ has no fluorescence response to live E. coli with intact cell membranes but selectively stained and demonstrated fluorescence during membrane damage of early-stage cells as well as exposure of nuclear materials at late-stage of cell lysis. Sph-Ru-MMT@PZ showed beneficial and synergistic anti-infective effects in vivo by inhibiting the E. coli infection-induced inflammatory response and eventually promoting wound healing in mice. This new strategy for high precision antibacterial therapy towards specific targets, provides an exciting opportunity for the application of multifunctional nanocomposites towards microbial infections.


Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects , Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Bacteremia/pathology , Coordination Complexes/chemistry , Disease Models, Animal , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Hemolysis/drug effects , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Mice , Nanoparticles/therapeutic use , Nanoparticles/toxicity , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Surface Properties , Wound Healing/drug effects
8.
J Inorg Biochem ; 216: 111339, 2021 03.
Article En | MEDLINE | ID: mdl-33388703

Different enantiomers of chiral drugs show distinctive activities. Here, a pair of chiral ruthenium Λ-[Ru(phen)2(TPEPIP)]2+ (Λ-Ru), and Δ-[Ru(phen)2(TPEPIP)]2+ (Δ-Ru) (phen = 1,10-phenanthroline; TPEPIP = 2-(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) compounds have been prepared and characterized. Both have aggregation-induced emission characteristics, although Λ-Ru exhibits much higher activity, towards duplex DNA extracted from SGC-7901 cancer cells. In vitro experiments demonstrate that both Λ-Ru and Δ-Ru can induce the apoptosis of tumor cells with Λ-Ru showing greater activity than Δ-Ru. Λ-Ru aggregates in the cell nucleus of SGC-7901 within 5 h which shows that nucleic acids may be the effective target of Λ-Ru. In vivo experiments with nude mice showed that Λ-Ru can inhibit the growth and proliferation of a tumor, in tumor-bearing mice as well as targeting the tumor site, as demonstrated by fluorescence. These results demonstrate the dual-function of Λ-Ru, which could be used for real-time visualization of a chemotherapeutic agent.


Antineoplastic Agents , Coordination Complexes , Neoplasms, Experimental/drug therapy , Ruthenium , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Female , HeLa Cells , Hep G2 Cells , Humans , Mice , Mice, Nude , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Ruthenium/chemistry , Ruthenium/pharmacology , Xenograft Model Antitumor Assays
9.
J Int Med Res ; 48(10): 300060520924550, 2020 Oct.
Article En | MEDLINE | ID: mdl-33045888

OBJECTIVE: To investigate the clinical manifestations of infectious mononucleosis in children of different ages. METHODS: Clinical data from pediatric patients with infectious mononucleosis admitted from May 2015 to April 2019 were retrospectively analyzed. Patients were stratified into three groups (age 1-3 years, 4-6 years, and 7-14 years) for analysis of clinical and laboratory results. RESULTS: Data from 61 patients (male:female ratio 1.18:1) aged 5.15 ± 2.93 years (mean ± standard deviation; range: 1-14 years) were analyzed. Infectious mononucleosis occurred throughout the year and the main clinical manifestations were fever (98.3%), tonsillitis (100%), tonsillar white exudate (83.6%), cervical lymphadenopathy (98.3%), hepatomegaly (37.7%), splenomegaly (42.6%), eyelid edema (41.0%), and nasal obstruction (49.2%). Disease onset was most common during early childhood (37.7%) and at preschool age (37.7%). Younger children had more obvious symptoms of nasal obstruction and older children had more significant elevations of alanine aminotransferase and higher percentages of atypical lymphocytes. CONCLUSION: The clinical manifestations of infectious mononucleosis in children differed by age. These associations required attention for clinical decision making.


Infectious Mononucleosis , Adolescent , Alanine Transaminase , Child , Child, Preschool , Female , Herpesvirus 4, Human , Humans , Infant , Infectious Mononucleosis/diagnosis , Male , Retrospective Studies
10.
Nanoscale Res Lett ; 15(1): 68, 2020 Mar 30.
Article En | MEDLINE | ID: mdl-32232589

This study proposes the synthesis of a type of anticancer nanoparticle, aptamers and Au nanoparticle (Apt-Au)-modified Morin pH-sensitive liposome (MSL), which exhibits targeting properties. Tumors are difficult to cure because their microenvironment varies from that of normal tissue; its pH is lower than that of normal tissue, which generally impedes the effectiveness of drugs. Thus, pH-responsive drugs have attracted extensive attention. Gold nanoparticles (AuNPs) show potential as drug carriers because of their small size, good biocompatibility, easy surface modification, and strong cell penetration. Apt-Au@MSL exhibits excellent monodispersity and tumor-targeting properties and can be released in partly acidic environment via dialysis. We screened our model cancer cell by MTT assay and found that SGC-7901 cells can effectively suppress proliferation. In vivo results demonstrate that the administration of Apt-Au@MSL could inhibit tumor growth in xenograft mouse models. H&E staining and TUNEL assay further confirmed that Apt-Au@MSL can promote tumor apoptosis. Apt-Au@MSL may induce apoptosis by triggering overproduction of reactive oxygen species (ROS) and regulating multiple signal crosstalk. Both blood biochemistry tests and H&E staining suggested that these materials exhibit negligible acute toxicity and good biocompatibility in vivo. With its powerful function, Apt-Au@MSL can be used as a target-based anticancer material for future clinical cancer treatment.

11.
Theranostics ; 9(19): 5610-5625, 2019.
Article En | MEDLINE | ID: mdl-31534506

Photothermal therapy as novel strategy to convert near-infrared (NIR) light into heat for treatment cancers has attracted great attention and been widely studied. However, side effects and low efficiency remain the main challenge of precise cancer photothermal therapy. Methods: In this study, we have successfully fabricated and characterized the dual-targeted gold nanoprisms, whereby bare gold nanoprisms (Au NPR) were conjugated to a phenanthroline derivatives-functionalized tetraphenylethene (TPE) and further stabilized with target peptide aptamers via Au-S bonds (Au-Apt-TPE). Then, the remaining nitrogen atoms of the Au-Apt-TPE could effectively chelate with Zn2+ ions (Au-Apt-TPE@Zn) for monitoring early stage apoptotic cells. Results: The as-synthesized Au-Apt-TPE@Zn exhibited good monodispersity, size stability and consistent spectral characteristics. TPE synthesized here showed aggregation-induced emission (AIE) characteristics, and zinc conjunction (TPE@Zn) endowed Au-Apt-TPE@Zn with the cell membrane-targeted ability to selectively recognize the membranes of early stage apoptotic cells but not respond to healthy cells, which provided valuable diagnosis information on therapeutic efficacy. Au-Apt-TPE@Zn achieved specifically nuclear-targeted ability by surface decoration of AS1411 DNA aptamer. Au-Apt-TPE@Zn under NIR irradiation showed effective photothermal therapy against SGC-7901 human gastric carcinoma cells growth in vitro by inducing apoptosis through triggering reactive oxygen species (ROS) overproduction and regulating multiple signal crosstalk. In vivo studies revealed that Au-Apt-TPE@Zn under NIR irradiation showed deep penetration and dual-model imaging application (cancer-targeted fluorescence imaging and light-up photoacoustic imaging). Au-Apt-TPE@Zn under NIR irradiation also displayed strong photothermal therapy against gastric carcinoma xenograft growth in vivo by induction of apoptosis. Importantly, analysis of histopathology, hematotoxicity and immunocytotoxicity indicated that Au-Apt-TPE@Zn had less side effect and high biocompatibility. Conclusions: Our findings validated the design of using Au nanoprism with AIE materials and dual-targeted decoration could be an effective strategy in recognition of early apoptosis, dual-model imaging and precise cancer photothermal therapy.


Apoptosis/drug effects , Gold/chemistry , Phototherapy , Stomach Neoplasms/therapy , Animals , Drug Delivery Systems , Gold/administration & dosage , Humans , Male , Metal Nanoparticles , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/metabolism , Stomach Neoplasms/physiopathology , Treatment Outcome , Xenograft Model Antitumor Assays
12.
Artif Cells Nanomed Biotechnol ; 47(1): 406-419, 2019 Dec.
Article En | MEDLINE | ID: mdl-30724609

A novel nanoparticle (Au-LTSL-GA.A) uses the thermosensitive liposome (LTSL) to encapsulate ganoderic acid A (GA.A), which successfully transforms the polarity of GA.A and has excellent water solubility. The multifunctional Au-LTSL-GA.A, a self-assembled thermal nanomaterial, was used in antibacterial and anticancer applications in combination with near-infrared (NIR) irradiation. The designed Au-LTSL-GA.A nanoparticle was used as a nano-photosensitizer to achieve synergistic photochemotherapy based on the phototherapy sensitization property of Au nanorods (NRs) and antitumour activity of GA.A. In the antibacterial experiments, the Au-LTSL-GA.A + NIR irradiation had a broad-spectrum antibacterial effect, exhibiting a strong antibacterial activity against drug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the raw GA.A and LTSL-GA.A. In the anticancer experiments, Au-LTSL-GA.A + NIR irradiation, which combined phototherapy sensitization property of Au NRs with antitumour activity of GA.A, exhibited high anticancer activity against MCF-7 cells. The IC50 value of Au-LTSL-GA.A + NIR irradiation (12.1 ± 1.3 µg/mL) was almost similar to cisplatin in MCF-7 cells. The evaluation of the potential in vivo toxicity of Au-LTSL-GA.A revealed no toxicity in mice. The results of this study suggest that Au-LTSL-GA.A has a wide range of potential industrial and clinical applications, such as in antibacterial treatment and cancer photochemotherapy.


Anti-Bacterial Agents , Escherichia coli/growth & development , Gold , Metal Nanoparticles , Nanotubes/chemistry , Neoplasms/drug therapy , Photochemotherapy , Staphylococcus aureus/growth & development , Triterpenes , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gold/chemistry , Gold/pharmacology , Humans , Liposomes , MCF-7 Cells , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Neoplasms/metabolism , Neoplasms/pathology , Triterpenes/chemistry , Triterpenes/pharmacology
13.
3 Biotech ; 9(2): 42, 2019 Feb.
Article En | MEDLINE | ID: mdl-30675452

Caulobacter flavus RHGG3T, a novel type species in the genus Caulobacter, originally isolated from rhizosphere soil of watermelon (Citrullus lanatus), has the ability to improve the growth of watermelon seedling and tolerate heavy metals. In vitro, C. flavus RHGG3T was able to solubilize phosphate (80.56 mg L-1), produce indole-3-acetic acid (IAA) (11.58 mg L-1) and was resistant to multiple heavy metals (copper, zinc, cadmium, cobalt and lead). Inoculating watermelon with this strain increased shoot and root length by 22.1% and 43.7%, respectively, and the total number of lateral roots by 55.9% compared to non-inoculated watermelon. In this study, we present the complete genome sequence of C. flavus RHGG3T, which was comprised of a single circular chromosome of 5,659,202 bp with a G + C content of 69.25%. An annotation analysis revealed that the C. flavus RHGG3T genome contained 5172 coding DNA sequences, 9 rRNA and 55 tRNA genes. Genes related to plant growth promotion (PGP), such as those associated with phosphate solubilization, nitrogen fixation, IAA, phenazine, volatile compounds, spermidine and cobalamin synthesis, were found in the C. flavus RHGG3T genome. Some genes responsible for heavy metal tolerance were also identified. The genome sequence of strain RHGG3T reported here provides new insight into the molecular mechanisms underlying the promotion of plant growth and the resistance to heavy metals in C. flavus. This study will be valuable for further exploration of the biotechnological applications of strain RHGG3T in agriculture.

14.
Bioorg Med Chem Lett ; 27(15): 3353-3358, 2017 08 01.
Article En | MEDLINE | ID: mdl-28610977

Novel (non-fluoroquinolone) inhibitors of bacterial type II topoisomerases (NBTIs) are an emerging class of antibacterial agents. We report an optimized series of cyclobutylaryl-substituted NBTIs. Compound 14 demonstrated excellent activity both in vitro (S. aureus MIC90=0.125µg/mL) and in vivo (systemic and tissue infections). Enhanced inhibition of Topoisomerase IV correlated with improved activity in S. aureus strains with mutations conferring resistance to NBTIs. Compound 14 also displayed an improved hERG IC50 of 85.9µM and a favorable profile in the anesthetized guinea pig model.


Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Quinolines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Topoisomerase Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , DNA Topoisomerase IV/metabolism , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/metabolism , Guinea Pigs , Humans , Microbial Sensitivity Tests , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/enzymology , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/chemistry
15.
Proc Natl Acad Sci U S A ; 113(13): 3509-14, 2016 Mar 29.
Article En | MEDLINE | ID: mdl-26976576

The Escherichia coli AcrAB-TolC efflux pump is the archetype of the resistance nodulation cell division (RND) exporters from Gram-negative bacteria. Overexpression of RND-type efflux pumps is a major factor in multidrug resistance (MDR), which makes these pumps important antibacterial drug discovery targets. We have recently developed novel pyranopyridine-based inhibitors of AcrB, which are orders of magnitude more powerful than the previously known inhibitors. However, further development of such inhibitors has been hindered by the lack of structural information for rational drug design. Although only the soluble, periplasmic part of AcrB binds and exports the ligands, the presence of the membrane-embedded domain in AcrB and its polyspecific binding behavior have made cocrystallization with drugs challenging. To overcome this obstacle, we have engineered and produced a soluble version of AcrB [AcrB periplasmic domain (AcrBper)], which is highly congruent in structure with the periplasmic part of the full-length protein, and is capable of binding substrates and potent inhibitors. Here, we describe the molecular basis for pyranopyridine-based inhibition of AcrB using a combination of cellular, X-ray crystallographic, and molecular dynamics (MD) simulations studies. The pyranopyridines bind within a phenylalanine-rich cage that branches from the deep binding pocket of AcrB, where they form extensive hydrophobic interactions. Moreover, the increasing potency of improved inhibitors correlates with the formation of a delicate protein- and water-mediated hydrogen bond network. These detailed insights provide a molecular platform for the development of novel combinational therapies using efflux pump inhibitors for combating multidrug resistant Gram-negative pathogens.


Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Pyridines/pharmacology , Anti-Bacterial Agents/chemistry , Binding Sites , Crystallography, X-Ray , Drug Discovery , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/metabolism , Protein Structure, Tertiary , Pyrans/chemistry , Pyrans/pharmacology , Pyridines/chemistry
16.
Bioorg Med Chem ; 23(17): 5789-98, 2015 Sep 01.
Article En | MEDLINE | ID: mdl-26209266

Herein, we describe the antifungal evaluation of 43 bisamidine compounds, of which 26 are new, having the scaffold [Am]-[HetAr]-[linker]-[HetAr]-[Am], in which [Am] is a cyclic or acyclic amidine group, [linker] is a benzene, pyridine, pyrimidine, pyrazine ring, or an aliphatic chain of two to four carbon, and [HetAr] is a 5,6-bicyclic heterocycle such as indole, benzimidazole, imidazopyridine, benzofuran, or benzothiophene. In the head-to-head series the two [HetAr] units are oriented such that the 5-membered rings are connected through the linker, and in the head-to-tail series, one of the [HetAr] systems is connected through the 6-membered ring; additionally, in some of the head-to-tail compounds, the [linker] is omitted. Many of these compounds exhibited significant antifungal activity against Candida albicans, Candida krusei, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans (MIC ⩽ 4 µg/ml). The most potent compounds, for example, P10, P19 and P34, are comparable in antifungal activities to amphotericin B (MIC 0.125 µg/ml). They exhibited rapid fungicidal activity (>3 log10 decrease in cfu/ml in 4h) at concentrations equivalent to 4× the MIC in time kill experiments. The bisamidines strongly inhibited DNA, RNA and cell wall biosynthesis in C. albicans in macromolecular synthesis assays. However, the half-maximal inhibitory concentration for DNA synthesis was approximately 30-fold lower than those for RNA and cell wall biosynthesis. Fluorescence microscopy of intact cells of C. albicans treated with a bisamidine exhibited enhanced fluorescence in the presence of DNA, demonstrating that the bisamidine was localized to the nucleus. The results of this study show that bisamidines are potent antifungal agents with rapid fungicidal activity, which is likely to be the result of their DNA-binding activity. Although it was difficult to obtain a broad-spectrum antifungal compound with low cytotoxicity, some of the compounds (e.g., P9, P14 and P43) exhibited favorable CC50 values against HeLa cells and maintained considerable antifungal activity.


Antifungal Agents/pharmacology , Candida/drug effects , Cryptococcus neoformans/drug effects , DNA-Binding Proteins/chemistry , Furans/chemistry , Furans/chemical synthesis , Humans
17.
Bioorg Med Chem ; 23(9): 2024-34, 2015 May 01.
Article En | MEDLINE | ID: mdl-25818767

Recently we described a novel pyranopyridine inhibitor (MBX2319) of RND-type efflux pumps of the Enterobacteriaceae. MBX2319 (3,3-dimethyl-5-cyano-8-morpholino-6-(phenethylthio)-3,4-dihydro-1H-pyrano[3,4-c]pyridine) is structurally distinct from other known Gram-negative efflux pump inhibitors (EPIs), such as 1-(1-naphthylmethyl)-piperazine (NMP), phenylalanylarginine-ß-naphthylamide (PAßN), D13-9001, and the pyridopyrimidine derivatives. Here, we report the synthesis and biological evaluation of 60 new analogs of MBX2319 that were designed to probe the structure activity relationships (SARs) of the pyranopyridine scaffold. The results of these studies produced a molecular activity map of the scaffold, which identifies regions that are critical to efflux inhibitory activities and those that can be modified to improve potency, metabolic stability and solubility. Several compounds, such as 22d-f, 22i and 22k, are significantly more effective than MBX2319 at potentiating the antibacterial activity of levofloxacin and piperacillin against Escherichia coli.


Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enterobacteriaceae/drug effects , Pyrans/pharmacology , Pyridines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Dose-Response Relationship, Drug , Enterobacteriaceae/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Microbial Sensitivity Tests , Molecular Structure , Pyrans/chemical synthesis , Pyrans/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
18.
J Sep Sci ; 38(3): 374-80, 2015 Feb.
Article En | MEDLINE | ID: mdl-25447425

A reversed-phase high-performance liquid chromatography method for the simultaneous determination of jatrorrhizine, palmatine, and berberine in Huangbo, the dried bark of Chinese Corktree, was established by using 1-hexyl-3-methylimidazolium tertafluoroborate as a mobile phase additive. The chromatographic behavior of the three compounds on the C18 column was studied with four different types of 1-alkyl-3-methylimidazolium-based ionic liquids as the mobile phase additives. The effect of 1-hexyl-3-methylimidazolium tertafluoroborate was the best in the four investigated ionic liquids. The concentration of 1-hexyl-3-methylimidazolium tertafluoroborate and the pH of the mobile phase, which influenced the chromatographic behaviors of the three bioactive compounds, were investigated. The linearity, precision, accuracy, repeatability, limit of detection, and quantification of the proposed method were found to be satisfactory. To explain the role of ionic liquids as the mobile phase additives, the possible mechanism was also explored and discussed.


Berberine Alkaloids/analysis , Borates/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Rutaceae/chemistry , Berberine Alkaloids/chemistry , Chromatography, Reverse-Phase
19.
Bioorg Med Chem Lett ; 24(15): 3366-72, 2014 Aug 01.
Article En | MEDLINE | ID: mdl-24969013

Herein we describe the synthesis and antibacterial evaluation of a new, unsymmetrical triaryl bisamidine compound series, [Am]-[indole]-[linker]-[HetAr/Ar]-[Am], in which [Am] is an amidine or amino group, [linker] is a benzene, thiophene or pyridine ring, and [HetAr/Ar] is a benzimidazole, imidazopyridine, benzofuran, benzothiophene, pyrimidine or benzene ring. When the [HetAr/Ar] unit is a 5,6-bicyclic heterocycle, it is oriented such that the 5-membered ring portion is connected to the [linker] unit and the 6-membered ring portion is connected to the [Am] unit. Among the 34 compounds in this series, compounds with benzofuran as the [HetAr/Ar] unit showed the highest potencies. Introduction of a fluorine atom or a methyl group to the triaryl core led to the more potent analogs. Bisamidines are more active toward bacteria while the monoamidines are more active toward mammalian cells (as indicated by low CC50 values). Importantly, we identified compound P12a (MBX 1887) with a relatively narrow spectrum against bacteria and a very high CC50 value. Compound P12a has been scaled up and is currently undergoing further evaluations for therapeutic applications.


Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Furans/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Furans/chemical synthesis , Furans/chemistry , HeLa Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
20.
Tetrahedron Lett ; 55(51): 7002-7006, 2014 Dec 17.
Article En | MEDLINE | ID: mdl-25838605

Diels-Alder reactions of five-membered heterocycles containing one heteroatom with an N-arylmaleimide were studied. Cycloaddition of 2,5-dimethylfuran (4) with 2-(4-methylphenyl)maleimide (3) in toluene at 60 °C gave bicyclic adduct 5. Cycloadditions of 3 with 2,5-dimethylthiophene (11) and 1,2,5-trimethylpyrrole (14) were also studied. Interestingly, the bicyclic compound 5 cleanly rearranged, with loss of water, when treated with p-toluenesulfonic acid in toluene at 80 °C to give 4,7-dimethyl-2-p-tolylisoindoline-1,3-dione (6).

...