Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
J Struct Biol ; : 108136, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39384001

ABSTRACT

Stomatopods are ferocious hunters that use weaponized appendages to strike down their pray. The clubs of species such as Odontodactylus scyllarus undergo tremendous forces, and in consequence they have intricate structures, consisting of hydroxyapatite, chitin, amorphous calcium phosphate and carbonate, and occasionally calcite. These materials are distributed differently across the four major zones of the dactyl club: the impact, periodic lateral and medial, and striated regions. While stomatopod clubs and their structure have been studied for a long time, studies have thus far been constrained to 2D mapping experiments with moderate resolution due to difficulties in preparing whole club thin sections, and absorption tomography that gives information on densities but not molecular length scales. To address this problem, and shed light on the structure of entire clubs, we herein used X-ray powder diffraction computed tomography (XRD-CT) using high energy X-rays at the P07 beamline of PETRA-III to allow penetrating the large samples whilst still obtaining high resolution information. This allowed mapping the 3D distribution of diffraction phases including the biomineral apatite and the semi-crystal chitin matrix. This showed that hydroxyapatite forms an envelope around the club, and that chitin forms 2D sheets in the periodic region of the club.

2.
J Am Chem Soc ; 146(34): 23729-23740, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39151091

ABSTRACT

Iridium dioxide (IrO2), ruthenium dioxide (RuO2), and their solid solutions (Ir1-xRuxO2) are very active electrocatalysts for the oxygen evolution reaction (OER). Efficient and facile synthesis of nanosized crystallites of these materials is of high significance for electrocatalytic applications for converting green energy to fuels (power-to-X). Here, we use in situ X-ray scattering to examine reaction conditions for different Ir and Ru precursors resulting in the development of a simple hydrothermal synthesis route using IrCl3 and KRuO4 to obtain homogeneous phase-pure Ir1-xRuxO2 nanocrystals. The solid solution nanocrystals can be obtained with a tunable composition of 0.2 < x < 1.0 and with ultra-small coherently scattering crystalline domains estimated from 1.3 to 2.6 nm in diameter based on PDF refinements. The in situ X-ray scattering data reveal a two-step formation mechanism, which involves the initial loss of chloride ligands followed by the formation of metal-oxygen octahedra clusters containing both Ir and Ru. These octahedra assemble with time resulting in long-range order resembling the rutile structure. The mixing of the metals on the atomic scale during the crystal formation presumably allows the formation of the solid solution rather than heterogeneous mixtures. The size of the final nanocrystals can be controlled by tuning the synthesis temperature. The facile hydrothermal synthesis route provides ultra-small nanoparticles with activity toward the OER in acidic electrolytes comparable to the best in the literature, and the optimal material composition very favorably combines low overpotential, high mass activity, and increased stability.

3.
Phys Chem Chem Phys ; 26(15): 12121-12132, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587495

ABSTRACT

Solvothermal synthesis presents a facile and highly flexible approach to chemical processing and it is widely used for preparation of micro- and nanosized inorganic materials. The large number of synthesis parameters in combination with the richness of inorganic chemistry means that it is difficult to predict or design synthesis outcomes, and it is demanding to uncover the effect of different parameters due to the sealed and complex nature of solvothermal reactors along with the time demands related to reactor cleaning, sample purification, and characterization. This study explores the effect on formation of crystalline products of six common anions in solvothermal treatment of aqueous and ethanolic precursors. Three different cations are included in the study (Mn2+, Co2+, Cu2+) representing chemical affinities towards different regions of the periodic table with respect to the hard soft acid base (HSAB) classification and the Goldschmidt classification. They additionally belong to the commonly used 3d transition metals and display a suitable variety in solvothermal chemistry to highlight anion effects. The results of the solvothermal in situ experiments demonstrate a clear effect of the precursor anions, with respect to whether crystallization occurs or not and the characteristics of the formed phases. Additionally, some of the anions are shown to be redox active and to influence the formation temperature of certain phases which in turn relates to the observed average crystallite sizes.

4.
Small ; 20(32): e2311714, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38501853

ABSTRACT

Nanocrystal self-assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self-assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed-packed face-centered cubic (fcc) supercrystals are studied. To this end, the study simultaneously and in situ measures X-ray total scattering with pair distribution function analysis (TS-PDF) and small-angle X-ray scattering (SAXS). It is found that the supercrystals' formation is preceded by an intermediate dense phase of nanocrystals displaying short-range order (SRO). It is further shown that the organization of oleic acid/oleylamine surfactants into lamellar structures likely drives the emergence of the SRO phase and later of the supercrystals by reducing the volume accessible to particle diffusion. The supercrystals' formation as well as their disassembly are triggered by temperature. The study demonstrates that ordering of solvent molecules can be crucial in the direct synthesis of supercrystals. The study also provides a general approach to investigate novel preparation routes of supercrystals in situ and across several length scales via X-ray scattering.

5.
Nat Mach Intell ; 6(2): 180-186, 2024.
Article in English | MEDLINE | ID: mdl-38404481

ABSTRACT

The removal or cancellation of noise has wide-spread applications in imaging and acoustics. In applications in everyday life, such as image restoration, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Denoising scientific data is further challenged by unknown noise profiles. In fact, such data will often include noise from multiple distinct sources, which substantially reduces the applicability of simulation-based approaches. Here we show how scientific data can be denoised by using a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction and resonant X-ray scattering data recorded on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We additionally show that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems.

6.
Nanoscale ; 15(45): 18481-18488, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37942507

ABSTRACT

Pd possesses attractive catalytic properties and nano-structuring is an obvious way to enhance catalytic activity. Alloying Pd with Pb has been shown to enhance the catalytic effect of alcohol oxidation. Further optimization of the catalytic effect can be accomplished by controlling the particle size and key to this is understanding the formation mechanism. By monitoring solvothermal syntheses using in situ X-ray total scattering, this study unveils the formation mechanism of PbxPdy intermetallic nanoparticles. The formation occurs through a multi-step mechanism. Initially, Pd nanoparticles are formed, followed by incorporation of Pb into the Pd-structure, thus forming PbxPdy intermetallic nanoparticles. By varying the reaction time and temperature, the incorporation of Pb can be controlled, thereby tailoring the phase outcome. Based on the in situ solvothermal syntheses, ex situ autoclave syntheses were performed, resulting in the synthesis of Pb3Pd5 and Pb9Pd13 with a purity above 93%. The catalytic effect of these intermetallic phases towards the hydrogen evolution reaction (HER) is assessed. It is found that Pd, Pb3Pd5, and Pb9Pd13 have comparable stabilities, however, the overpotential increases with increasing amounts of Pb.

7.
Angew Chem Int Ed Engl ; 62(43): e202307948, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37635657

ABSTRACT

CuBi2 O4 has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering. We find that a fast decrease in the generated photocurrents correlates directly with the formation of a metallic Bi phase. We further show that the slower formation of metallic Cu, as well as the dissolution of the electrode in contact with the electrolyte, further affect the CuBi2 O4 activity and morphology. Our study provides a comprehensive picture of the degradation mechanisms affecting CuBi2 O4 electrodes under operation and poses the methodological basis to investigate the photocorrosion processes affecting a wide range of PEC materials.

8.
J Appl Crystallogr ; 56(Pt 3): 581-588, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37284256

ABSTRACT

Understanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.7 mm, as they can withstand pressures up to 250 bar and temperatures up to 723 K for several hours. Reported here are recent developments of the in situ setups available for general users on the P21.1 beamline at PETRA III and the DanMAX beamline at MAX IV to study nucleation and growth phenomena in solvothermal synthesis. It is shown that data suitable for both reciprocal-space Rietveld refinement and direct-space pair distribution function refinement can be obtained on a timescale of 4 ms.

9.
Light Sci Appl ; 12(1): 130, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37248250

ABSTRACT

The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure, induced by the necessarily high energy of short-wavelength radiation. Imaging the inelastically scattered X-rays at a photon energy of 60 keV (0.02 nm wavelength) offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography. We present images of dried, unstained, and unfixed biological objects obtained by scanning Compton X-ray microscopy, at a resolution of about 70 nm. This microscope was realised using novel wedged multilayer Laue lenses that were fabricated to sub-ångström precision, a new wavefront measurement scheme for hard X rays, and efficient pixel-array detectors. The doses required to form these images were as little as 0.02% of the tolerable dose and 0.05% of that needed for phase-contrast imaging at similar resolution using 17 keV photon energy. The images obtained provide a quantitative map of the projected mass density in the sample, as confirmed by imaging a silicon wedge. Based on these results, we find that it should be possible to obtain radiation damage-free images of biological samples at a resolution below 10 nm.

10.
J Synchrotron Radiat ; 30(Pt 3): 571-581, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37042662

ABSTRACT

In heterogeneous catalysis, operando measurements probe catalysts in their active state and are essential for revealing complex catalyst structure-activity relationships. The development of appropriate operando sample environments for spatially resolved studies has come strongly into focus in recent years, particularly when coupled to the powerful and multimodal characterization tools available at synchrotron light sources. However, most catalysis studies at synchrotron facilities only measure structural information about the catalyst in a spatially resolved manner, whereas gas analysis is restricted to the reactor outlet. Here, a fully automated and integrated catalytic profile reactor setup is shown for the combined measurement of temperature, gas composition and high-energy X-ray diffraction (XRD) profiles, using the oxidative dehydrogenation of C2H6 to C2H4 over MoO3/γ-Al2O3 as a test system. The profile reactor methodology was previously developed for X-ray absorption spectroscopy and is here extended for operando XRD. The profile reactor is a versatile and accessible research tool for combined spatially resolved structure-activity profiling, enabling the use of multiple synchrotron-based characterization methods to promote a knowledge-based optimization of a wide range of catalytic systems in a time- and resource-efficient way.

11.
Nanoscale ; 15(11): 5284-5292, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36810774

ABSTRACT

Gallium oxides are of broad interest due to their wide band gaps and attractive photoelectric properties. Typically, the synthesis of gallium oxide nanoparticles is based on a combination of solvent-based methods and subsequent calcination, but detailed information about solvent based formation processes is lacking, and this limits the tailoring of materials. Here we have examined the formation mechanisms and crystal structure transformations of gallium oxides during solvothermal synthesis using in situ X-ray diffraction. γ-Ga2O3 readily forms over a wide range of conditions. In contrast, ß-Ga2O3 only forms at high temperatures (T > 300 °C), and it is always preceded by γ-Ga2O3, indicating that γ-Ga2O3 is a crucial part of the formation mechanism of ß-Ga2O3. The activation energy for formation of ß-Ga2O3 from γ-Ga2O3 is determined to be 90-100 kJ mol-1 in ethanol, water and aqueous NaOH based on kinetic modelling of phase fractions obtained from multi-temperature in situ X-ray diffraction data. At low temperatures GaOOH and Ga5O7OH form in aqueous solvent, but these phases are also obtained from γ-Ga2O3. Systematic exploration of synthesis parameters such as temperature, heating rate, solvent and reaction time reveal that they all affect the resulting product. In general, the solvent based reaction paths are different from reports on solid state calcination studies. This underlines that the solvent is an active part of the solvothermal reactions and to a high degree determines different formation mechanisms.

12.
Chem Sci ; 13(43): 12883-12891, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36519061

ABSTRACT

The structures of metal ions in solution constitute essential information for obtaining chemical insight spanning from catalytic reaction mechanisms to formation of functional nanomaterials. Here, we explore Zr4+ solution structures using X-ray pair distribution function (PDF) analysis across pH (0-14), concentrations (0.1-1.5 M), solvents (water, methanol, ethanol, acetonitrile) and metal sources (ZrCl4, ZrOCl2·8H2O, ZrO(NO3)2·xH2O). In water, [Zr4(OH)8(OH2)16]8+-tetramers are predominant, while non-aqueous solvents contain monomeric complexes. The PDF analysis also reveals second sphere coordination of chloride counter ions to the aqueous tetramers. The results are reproducible across data measured at three different beamlines at the PETRA-III and MAX IV synchrotron light sources.

13.
Acta Crystallogr A Found Adv ; 78(Pt 6): 515, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36318075

ABSTRACT

The name of the third author of the article by Koch et al. [Acta Cryst. (2021). A77, 611-636] is corrected.

14.
IUCrJ ; 9(Pt 5): 594-603, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36071809

ABSTRACT

An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018 ▸). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general.

15.
Rev Sci Instrum ; 93(6): 065111, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35777992

ABSTRACT

Characterizing electrode surface structures under operando conditions is essential for fully understanding structure-activity relationships in electrocatalysis. Here, we combine in a single experiment high-energy surface x-ray diffraction as a characterizing technique with a rotating disk electrode to provide steady state kinetics under electrocatalytic conditions. Using Pt(111) and Pt(100) model electrodes, we show that full crystal truncation rod measurements are readily possible up to rotation rates of 1200 rpm. Furthermore, we discuss possibilities for both potentiostatic as well as potentiodynamic measurements, demonstrating the versatility of this technique. These different modes of operation, combined with the relatively simple experimental setup, make the combined rotating disk electrode-surface x-ray diffraction experiment a powerful technique for studying surface structures under operando electrocatalytic conditions.

16.
Small Methods ; 5(9): e2100512, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34928070

ABSTRACT

Synchrotron high-energy X-ray diffraction computed tomography has been employed to investigate, for the first time, commercial cylindrical Li-ion batteries electrochemically cycled over the two cycling rates of C/2 and C/20. This technique yields maps of the crystalline components and chemical species as a cross-section of the cell with high spatiotemporal resolution (550 × 550 images with 20 × 20 × 3 µm3 voxel size in ca. 1 h). The recently developed Direct Least-Squares Reconstruction algorithm is used to overcome the well-known parallax problem and led to accurate lattice parameter maps for the device cathode. Chemical heterogeneities are revealed at both electrodes and are attributed to uneven Li and current distributions in the cells. It is shown that this technique has the potential to become an invaluable diagnostic tool for real-world commercial batteries and for their characterization under operating conditions, leading to unique insights into "real" battery degradation mechanisms as they occur.

17.
Chem Sci ; 12(43): 14420-14431, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34880993

ABSTRACT

The atomic structures, and thereby the coordination chemistry, of metal ions in aqueous solution represent a cornerstone of chemistry, since they provide first steps in rationalizing generally observed chemical information. However, accurate structural information about metal ion solution species is often surprisingly scarce. Here, the atomic structures of Ga3+ ion complexes were determined directly in aqueous solutions across a wide range of pH, counter anions and concentrations by X-ray pair distribution function analysis and 71Ga NMR. At low pH (<2) octahedrally coordinated gallium dominates as either monomers with a high degree of solvent ordering or as Ga-dimers. At slightly higher pH (pH ≈ 2-3) a polyoxogallate structure is identified as either Ga30 or Ga32 in contradiction with the previously proposed Ga13 Keggin structures. At neutral and slightly higher pH nanosized GaOOH particles form, whereas for pH > 12 tetrahedrally coordinated gallium ions surrounded by ordered solvent are observed. The effects of varying either the concentration or counter anion were minimal. The present study provides the first comprehensive structural exploration of the aqueous chemistry of Ga3+ ions with atomic resolution, which is relevant for both semiconductor fabrication and medical applications.

18.
Acta Crystallogr A Found Adv ; 77(Pt 6): 611-636, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34726636

ABSTRACT

Data reduction and correction steps and processed data reproducibility in the emerging single-crystal total-scattering-based technique of three-dimensional differential atomic pair distribution function (3D-ΔPDF) analysis are explored. All steps from sample measurement to data processing are outlined using a crystal of CuIr2S4 as an example, studied in a setup equipped with a high-energy X-ray beam and a flat-panel area detector. Computational overhead as pertains to data sampling and the associated data-processing steps is also discussed. Various aspects of the final 3D-ΔPDF reproducibility are explicitly tested by varying the data-processing order and included steps, and by carrying out a crystal-to-crystal data comparison. Situations in which the 3D-ΔPDF is robust are identified, and caution against a few particular cases which can lead to inconsistent 3D-ΔPDFs is noted. Although not all the approaches applied herein will be valid across all systems, and a more in-depth analysis of some of the effects of the data-processing steps may still needed, the methods collected herein represent the start of a more systematic discussion about data processing and corrections in this field.

19.
J Am Chem Soc ; 143(40): 16332-16336, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34582201

ABSTRACT

Colloidal bismuth therapeutics have been used for hundreds of years, yet remain mysterious. Here we report an X-ray pair distribution function (PDF) study of the solvolysis of bismuth disalicylate, a model for the metallodrug bismuth subsalicylate (Pepto-Bismol). This reveals catalysis by traces of water, followed by multistep cluster growth. The ratio of the two major species, {Bi9O7} and {Bi38O44}, depends on exposure to air, time, and the solvent. The solution-phase cluster structures are of significantly higher symmetry in comparison to solid-state analogues, with reduced off-center Bi3+ displacements. This explains why such "magic-size" clusters can be both stable enough to crystallize and sufficiently labile for further growth.


Subject(s)
Bismuth , Organometallic Compounds , Salicylates
20.
Nat Commun ; 12(1): 4429, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34285227

ABSTRACT

The key to fabricating complex, hierarchical materials is the control of chemical reactions at various length scales. To this end, the classical model of nucleation and growth fails to provide sufficient information. Here, we illustrate how modern X-ray spectroscopic and scattering in situ studies bridge the molecular- and macro- length scales for assemblies of polyhedrally shaped CoO nanocrystals. Utilizing high energy-resolution fluorescence-detected X-ray absorption spectroscopy, we directly access the molecular level of the nanomaterial synthesis. We reveal that initially Co(acac)3 rapidly reduces to square-planar Co(acac)2 and coordinates to two solvent molecules. Combining atomic pair distribution functions and small-angle X-ray scattering we observe that, unlike a classical nucleation and growth mechanism, nuclei as small as 2 nm assemble into superstructures of 20 nm. The individual nanoparticles and assemblies continue growing at a similar pace. The final spherical assemblies are smaller than 100 nm, while the nanoparticles reach a size of 6 nm and adopt various polyhedral, edgy shapes. Our work thus provides a comprehensive perspective on the emergence of nano-assemblies in solution.

SELECTION OF CITATIONS
SEARCH DETAIL