Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 190(6): 2150-60, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18192393

ABSTRACT

Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome.


Subject(s)
Actinobacteria/genetics , Adaptation, Physiological/genetics , Genome, Bacterial , Plants/microbiology , Actinobacteria/growth & development , Actinobacteria/metabolism , Base Composition/genetics , Chromosomes, Bacterial/genetics , DNA Transposable Elements/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Polysaccharides, Bacterial/metabolism , Sequence Analysis, DNA
2.
Genome Res ; 15(5): 629-40, 2005 May.
Article in English | MEDLINE | ID: mdl-15837807

ABSTRACT

The obligate intracellular bacterial pathogen Chlamydophila abortus strain S26/3 (formerly the abortion subtype of Chlamydia psittaci) is an important cause of late gestation abortions in ruminants and pigs. Furthermore, although relatively rare, zoonotic infection can result in acute illness and miscarriage in pregnant women. The complete genome sequence was determined and shows a high level of conservation in both sequence and overall gene content in comparison to other Chlamydiaceae. The 1,144,377-bp genome contains 961 predicted coding sequences, 842 of which are conserved with those of Chlamydophila caviae and Chlamydophila pneumoniae. Within this conserved Cp. abortus core genome we have identified the major regions of variation and have focused our analysis on these loci, several of which were found to encode highly variable protein families, such as TMH/Inc and Pmp families, which are strong candidates for the source of diversity in host tropism and disease causation in this group of organisms. Significantly, Cp. abortus lacks any toxin genes, and also lacks genes involved in tryptophan metabolism and nucleotide salvaging (guaB is present as a pseudogene), suggesting that the genetic basis of niche adaptation of this species is distinct from those previously proposed for other chlamydial species.


Subject(s)
Bacterial Proteins/genetics , Chlamydophila/genetics , Genetic Variation , Genome, Bacterial , Phylogeny , Base Sequence , Chromosome Mapping , Computational Biology , Conserved Sequence/genetics , DNA Primers , Membrane Proteins/genetics , Molecular Sequence Data , Pseudogenes/genetics , Sequence Analysis, DNA , Species Specificity
3.
Science ; 307(5706): 82-6, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15637271

ABSTRACT

Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.


Subject(s)
Genome, Protozoan , Life Cycle Stages , Plasmodium/growth & development , Plasmodium/genetics , Proteome/analysis , 3' Untranslated Regions , Animals , Anopheles/parasitology , Computational Biology , Evolution, Molecular , Gene Expression Profiling , Gene Silencing , Genes, Protozoan , Malaria/parasitology , Oligonucleotide Array Sequence Analysis , Plasmodium/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Plasmodium chabaudi/genetics , Plasmodium chabaudi/growth & development , Plasmodium chabaudi/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Plasmodium yoelii/genetics , Plasmodium yoelii/growth & development , Plasmodium yoelii/metabolism , Proteomics , Protozoan Proteins/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , Selection, Genetic , Transcription, Genetic
4.
Proc Natl Acad Sci U S A ; 101(26): 9786-91, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15213324

ABSTRACT

Staphylococcus aureus is an important nosocomial and community-acquired pathogen. Its genetic plasticity has facilitated the evolution of many virulent and drug-resistant strains, presenting a major and constantly changing clinical challenge. We sequenced the approximately 2.8-Mbp genomes of two disease-causing S. aureus strains isolated from distinct clinical settings: a recent hospital-acquired representative of the epidemic methicillin-resistant S. aureus EMRSA-16 clone (MRSA252), a clinically important and globally prevalent lineage; and a representative of an invasive community-acquired methicillin-susceptible S. aureus clone (MSSA476). A comparative-genomics approach was used to explore the mechanisms of evolution of clinically important S. aureus genomes and to identify regions affecting virulence and drug resistance. The genome sequences of MRSA252 and MSSA476 have a well conserved core region but differ markedly in their accessory genetic elements. MRSA252 is the most genetically diverse S. aureus strain sequenced to date: approximately 6% of the genome is novel compared with other published genomes, and it contains several unique genetic elements. MSSA476 is methicillin-susceptible, but it contains a novel Staphylococcal chromosomal cassette (SCC) mec-like element (designated SCC(476)), which is integrated at the same site on the chromosome as SCCmec elements in MRSA strains but encodes a putative fusidic acid resistance protein. The crucial role that accessory elements play in the rapid evolution of S. aureus is clearly illustrated by comparing the MSSA476 genome with that of an extremely closely related MRSA community-acquired strain; the differential distribution of large mobile elements carrying virulence and drug-resistance determinants may be responsible for the clinically important phenotypic differences in these strains.


Subject(s)
Drug Resistance, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Drug Resistance, Bacterial/drug effects , Genes, Bacterial/genetics , Genetic Variation , Genomics , Humans , Phylogeny , Sequence Analysis, DNA , Staphylococcus aureus/classification , Staphylococcus aureus/drug effects , Virulence/genetics
5.
Proc Natl Acad Sci U S A ; 100(13): 7877-82, 2003 Jun 24.
Article in English | MEDLINE | ID: mdl-12788972

ABSTRACT

Mycobacterium bovis is the causative agent of tuberculosis in a range of animal species and man, with worldwide annual losses to agriculture of $3 billion. The human burden of tuberculosis caused by the bovine tubercle bacillus is still largely unknown. M. bovis was also the progenitor for the M. bovis bacillus Calmette-Guérin vaccine strain, the most widely used human vaccine. Here we describe the 4,345,492-bp genome sequence of M. bovis AF2122/97 and its comparison with the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. Strikingly, the genome sequence of M. bovis is >99.95% identical to that of M. tuberculosis, but deletion of genetic information has led to a reduced genome size. Comparison with M. leprae reveals a number of common gene losses, suggesting the removal of functional redundancy. Cell wall components and secreted proteins show the greatest variation, indicating their potential role in host-bacillus interactions or immune evasion. Furthermore, there are no genes unique to M. bovis, implying that differential gene expression may be the key to the host tropisms of human and bovine bacilli. The genome sequence therefore offers major insight on the evolution, host preference, and pathobiology of M. bovis.


Subject(s)
Genome, Bacterial , Models, Biological , Models, Genetic , Molecular Sequence Data , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...