Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 12(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39065057

ABSTRACT

Given the proven zoonotic potential of the intestinal protozoan Blastocystis sp., a fast-growing number of surveys are being conducted to identify potential animal reservoirs for transmission of the parasite. Nevertheless, few epidemiological studies have been conducted on farmed animals in Egypt. Therefore, a total of 1089 fecal samples were collected from herbivores (sheep, goats, camels, horses, and rabbits) in six Egyptian governorates (Dakahlia, Gharbia, Kafr El Sheikh, Giza, Aswan, and Sharqia). Samples were screened for the presence of Blastocystis sp. by real-time PCR followed by sequencing of positive PCR products and phylogenetic analysis for subtyping of the isolates. Overall, Blastocystis sp. was identified in 37.6% of the samples, with significant differences in frequency between animal groups (sheep, 65.5%; camels, 62.2%; goats, 36.0%; rabbits, 10.1%; horses, 3.3%). Mixed infections were reported in 35.7% of the Blastocystis sp.-positive samples. A wide range of subtypes (STs) with varying frequency were identified from single infections in ruminants including sheep (ST1-ST3, ST5, ST10, ST14, ST21, ST24, ST26, and ST40), goats (ST1, ST3, ST5, ST10, ST26, ST40, ST43, and ST44), and camels (ST3, ST10, ST21, ST24-ST26, ST30, and ST44). Most of them overlapped across these animal groups, highlighting their adaptation to ruminant hosts. In other herbivores, only three and two STs were evidenced in rabbits (ST1-ST3) and horses (ST3 and ST44), respectively. The greater occurrence and wider genetic diversity of parasite isolates among ruminants, in contrast to other herbivores, strongly suggested that dietary habits likely played a significant role in influencing both the colonization rates of Blastocystis sp. and ST preference. Of all the isolates subtyped herein, 66.3% were reported as potentially zoonotic, emphasizing the significant role these animal groups may play in transmitting the parasite to humans. These findings also expand our knowledge on the prevalence, genetic diversity, host specificity, and zoonotic potential of Blastocystis sp. in herbivores.

2.
Microorganisms ; 12(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38674653

ABSTRACT

Blastocystis sp. is the most common single-celled eukaryote colonizing the human gastrointestinal tract worldwide. Because of the proven zoonotic potential of this protozoan, sustained research is therefore focused on identifying various reservoirs of transmission to humans, and in particular animal sources. Numerous groups of animals are considered to be such reservoirs due to their handling or consumption. However, some of them, including mollusks, remain underexplored. Therefore, a molecular epidemiological survey conducted in wild mussels was carried out in Northern France (Hauts-de-France region) to evaluate the frequency and subtypes (STs) distribution of Blastocystis sp. in these bivalve mollusks. For this purpose, 100 mussels (Mytilus edulis) were randomly collected in two sampling sites (Wimereux and Dannes) located in the vicinity of Boulogne-sur-Mer. The gills and gastrointestinal tract of each mussel were screened for the presence of Blastocystis sp. by real-time polymerase chain reaction (qPCR) assay followed by direct sequencing of positive PCR products and subtyping through phylogenetic analysis. In parallel, sequences of potential representative Blastocystis sp. isolates that were previously obtained from temporal surveys of seawater samples at marine stations offshore of Wimereux were integrated in the present analysis. By taking into account the qPCR results from all mussels, the overall prevalence of the parasite was shown to reach 62.0%. In total, more than 55% of the positive samples presented mixed infections. In the remaining mussel samples with a single sequence, various STs including ST3, ST7, ST14, ST23, ST26 and ST44 were reported with varying frequencies. Such distribution of STs coupled with the absence of a predominant ST specific to these bivalves strongly suggested that mussels might not be natural hosts of Blastocystis sp. and might rather be carriers of parasite isolates from both human and animal (bovid and birds) waste. These data from mussels together with the molecular identification of isolates from marine stations were subsequently discussed along with the local geographical context in order to clarify the circulation of this protozoan in this area. The identification of human and animal STs of Blastocystis sp. in mussels emphasized the active circulation of this protozoan in mollusks and suggested a significant environmental contamination of fecal origin. This study has provided new insights into the host/carrier range and transmission of Blastocystis sp. and emphasized its potential as an effective sentinel species for water quality and environmental contamination.

SELECTION OF CITATIONS
SEARCH DETAIL