Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35893575

ABSTRACT

Cyanobacterial macrocolonies known as Llayta are found in Andean wetlands and have been consumed since pre-Columbian times in South America. Macrocolonies of filamentous cyanobacteria are niches for colonization by other microorganisms. However, the microbiome of edible Llayta has not been explored. Based on a culture-independent approach, we report the presence, identification, and metagenomic genome reconstruction of Cyanocohniella sp. LLY associated to Llayta trichomes. The assembled genome of strain LLY is now available for further inquiries and may be instrumental for taxonomic advances concerning this genus. All known members of the Cyanocohniella genus have been isolated from salty European habitats. A biogeographic gap for the Cyanocohniella genus is partially filled by the existence of strain LLY in Andes Mountains wetlands in South America as a new habitat. This is the first genome available for members of this genus. Genes involved in primary and secondary metabolism are described, providing new insights regarding the putative metabolic capabilities of Cyanocohniella sp. LLY.

2.
Microorganisms ; 7(12)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783517

ABSTRACT

Halites, which are typically found in various Atacama locations, are evaporitic rocks that are considered as micro-scaled salterns. Both structural and functional metagenomic analyses of halite nodules were performed. Structural analyses indicated that the halite microbiota is mainly composed of NaCl-adapted microorganisms. In addition, halites appear to harbor a limited diversity of fungal families together with a biodiverse collection of protozoa. Functional analysis indicated that the halite microbiome possesses the capacity to make an extensive contribution to carbon, nitrogen, and sulfur cycles, but possess a limited capacity to fix nitrogen. The halite metagenome also contains a vast repertory of carbohydrate active enzymes (CAZY) with glycosyl transferases being the most abundant class present, followed by glycosyl hydrolases (GH). Amylases were also present in high abundance, with GH also being identified. Thus, the halite microbiota is a potential useful source of novel enzymes that could have biotechnological applicability. This is the first metagenomic report of fungi and protozoa as endolithobionts of halite nodules, as well as the first attempt to describe the repertoire of CAZY in this community. In addition, we present a comprehensive functional metagenomic analysis of the metabolic capacities of the halite microbiota, providing evidence for the first time on the sulfur cycle in Atacama halites.

3.
Article in English | MEDLINE | ID: mdl-30701248

ABSTRACT

A Gram-positive, coagulase-negative, novobiocin resistant, and lithium-tolerant bacterium was isolated from Salar de Atacama. Strain LCHXa is closely related to Staphylococcus sciuri. Its genome is 3,013,090 bp long and contains 2,551 predicted protein genes. We observed 58 genes associated with stress response and 17 genes linked to osmoregulation, mainly related to glycine betaine metabolism.

4.
PLoS One ; 13(5): e0195080, 2018.
Article in English | MEDLINE | ID: mdl-29715297

ABSTRACT

Arsenic (As), a highly toxic metalloid, naturally present in Camarones River (Atacama Desert, Chile) is a great health concern for the local population and authorities. In this study, the taxonomic and functional characterization of bacterial communities associated to metal-rich sediments from three sites of the river (sites M1, M2 and M3), showing different arsenic concentrations, were evaluated using a combination of approaches. Diversity of bacterial communities was evaluated by Illumina sequencing. Strains resistant to arsenic concentrations varying from 0.5 to 100 mM arsenite or arsenate were isolated and the presence of genes coding for enzymes involved in arsenic oxidation (aio) or reduction (arsC) investigated. Bacterial communities showed a moderate diversity which increased as arsenic concentrations decreased along the river. Sequences of the dominant taxonomic groups (abundances ≥1%) present in all three sites were affiliated to Proteobacteria (range 40.3-47.2%), Firmicutes (8.4-24.8%), Acidobacteria (10.4-17.1%), Actinobacteria (5.4-8.1%), Chloroflexi (3.9-7.5%), Planctomycetes (1.2-5.3%), Gemmatimonadetes (1.2-1.5%), and Nitrospirae (1.1-1.2%). Bacterial communities from sites M2 and M3 showed no significant differences in diversity between each other (p = 0.9753) but they were significantly more diverse than M1 (p<0.001 and p<0.001, respectively). Sequences affiliated with Proteobacteria, Firmicutes, Acidobacteria, Chloroflexi and Actinobacteria at M1 accounted for more than 89% of the total classified bacterial sequences present but these phyla were present in lesser proportions in M2 and M3 sites. Strains isolated from the sediment of sample M1, having the greatest arsenic concentration (498 mg kg-1), showed the largest percentages of arsenic oxidation and reduction. Genes aio were more frequently detected in isolates from M1 (54%), whereas arsC genes were present in almost all isolates from all three sediments, suggesting that bacterial communities play an important role in the arsenic biogeochemical cycle and detoxification of arsenical compounds. Overall, results provide further knowledge on the microbial diversity of arsenic contaminated fresh-water sediments.


Subject(s)
Arsenic/toxicity , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial , Geologic Sediments/microbiology , Rivers/microbiology , Bacteria/classification , Bacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL