Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Theor Appl Genet ; 136(11): 232, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37875655

ABSTRACT

KEY MESSAGE: Four stable QTL for adult-plant resistance (APR) to powdery mildew were identified on chromosome arms 1DL, 2BS, 2DL, and 6BL in the widely grown Chinese wheat cultivar Bainong 64. These QTL had no effect on response to stripe rust or leaf rust. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating fungal disease. Seedlings of Chinese wheat Bainong 64 are susceptible to Bgt, but adult plants have maintained resistance since it was released in 1996. A population of 171 recombinant inbred lines (RILs) developed from cross Jingshuang 16/Bainong 64 (JS16/BN64) was used to dissect genetic components of powdery mildew resistance. A genetic map comprising 5383 polymorphic markers was constructed using the 15 K SNP chip and kompetitive allele-specific PCR (KASP) markers. Composite interval mapping identified four stable QTL with favorable alleles all from BN64 on chromosome arms 1DL, 2BS, 2DL, and 6BL in at least four environments. They accounted for 8.3%, 13.8%, 14.4%, and 9.0% of the total phenotypic variation explained (PVE) in maximum, respectively. QPmjbr.caas-1DL, situated about 22 Mb from centromere, is probably a new QTL. QPmjbr.caas-2DL located near the end of arm 2DL and explained the largest PVE. Using genetic maps populated with KASP markers, QPmjbr.caas-2BS and QPmjbr.caas-6BL were fine mapped to a 1.8 cM genetic intervals spanning 13.6 Mb (76.0-89.6 Mb) and 1.7 cM and 4.9 Mb (659.9-664.8 Mb), respectively. The four QTL independent of stripe rust and leaf rust resistance were validated for powdery mildew resistance in another RIL population related to BN64 and a cultivar panel using representative KASP markers. Since BN64 has been a leading cultivar and an important breeding parent in China, the QTL and markers reported in this study will be useful for marker-assisted selection of APR.


Subject(s)
Basidiomycota , Quantitative Trait Loci , Chromosome Mapping , Phenotype , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Breeding
3.
J Neuroimmunol ; 383: 578191, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37660537

ABSTRACT

Hypertrophic pachymeningitis (HP) is a relatively rare disease of the central nervous system characterized by local or diffuse fibrous thickening of the dura mater. At present, there is still insufficient research on the pathogenesis and treatment strategies of this disease. We reported a continuous case series of seven patients with idiopathic HP (IHP), and also details one case of immunoglobulin G4-related HP requiring surgical intervention. Early diagnosis and appropriate surgical intervention for IHP could prevent the progression of permanent neurological damage and spinal cord paraplegia.


Subject(s)
Meningitis , Humans , Dura Mater/diagnostic imaging , Dura Mater/surgery , Dura Mater/pathology , Hypertrophy , Meningitis/complications , Meningitis/diagnostic imaging , Spinal Cord/pathology
4.
Theor Appl Genet ; 136(6): 142, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37247049

ABSTRACT

KEY MESSAGE: Adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895 was mapped to the physical interval 710.2-713.2 Mb on the long arm of chromosome 2A. Adult-plant resistance to stripe rust is generally more durable than all-stage resistance. Chinese wheat cultivar Zhongmai 895 showed stable stripe rust resistance at the adult-plant stage. To map the genetic loci underlying its resistance, 171 doubled haploid (DH) lines from a Yangmai 16/Zhongmai 895 cross were genotyped with the wheat 660 K SNP chip. Disease severities of the DH population and parents were assessed in four environments. A major QTL designated QYryz.caas-2AL was mapped to interval 703.7-715.3 Mb on the long arm of chromosome 2A using both chip-based and KASP (kompetitive allele-specific PCR) marker-based methods, explaining 31.5 to 54.1% of the phenotypic variances. The QTL was further validated in an F2 population of cross Emai 580/Zhongmai 895 with 459 plants and a panel of 240 wheat cultivars using KASP markers. Three reliable KASP markers predicted a low frequency (7.2-10.5%) of QYryz.caas-2AL in the test panel and remapped the gene to the physical interval 710.2-713.2 Mb. Based on different physical positions or genetic effects from known genes or QTL on chromosome arm 2AL, the gene was predicted to be a new one for adult-plant stripe rust resistance and was named Yr86. Twenty KASP markers linked to Yr86 were developed in this study based on wheat 660 K SNP array and genome re-sequencing. Three of them are significantly associated with stripe rust resistance in natural population. These markers should be useful for marker-assisted selection and also provide a starting point for fine mapping and map-based cloning of the new resistance gene.


Subject(s)
Basidiomycota , Quantitative Trait Loci , Triticum/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Polymorphism, Single Nucleotide
5.
Plant Dis ; 107(10): 3230-3237, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37018212

ABSTRACT

Powdery mildew caused by Blumeria graminis f. sp. tritici is a threat to wheat production in China. Mapping quantitative trait loci (QTL) for resistance to powdery mildew and developing breeder-friendly markers are important initial steps in breeding resistant cultivars. An all-stage resistance gene and several QTL were identified using a population of 254 recombinant inbred lines developed from a Jingdong 8/Aikang 58 cross. The population was evaluated for powdery mildew resistance across six field environments over three consecutive growing seasons utilizing two different mixtures of B. graminis f. sp. tritici isolates, named #Bgt-HB and #Bgt-BJ. Using genotypic data obtained from the Wheat TraitBreed 50K single-nucleotide polymorphism array, seven stable QTL were identified on chromosome arms 1DL, 2AL, 2DS, 4DL, 5AL, 6BL.1, and 6BL.2. The QTL on 2AL conferred all-stage resistance to B. graminis f. sp. tritici race E20 in greenhouse tests and explained up to 52% of the phenotypic variance in field trials but was resistant only against #Bgt-HB. The gene involved in this QTL was predicted to be Pm4a based on genome location and gene sequence. QPmja.caas-1DL, QPmja.caas-4DL, and QPmja.caas-6BL.1 were identified as potentially new QTL for powdery mildew resistance. QPmja.caas-2DS and QPmja.caas-6BL.1 were effective against both B. graminis f. sp. tritici mixtures, indicating their probable broad-spectrum resistance. A Kompetitive allele-specific PCR marker closely linked to QPmja.caas-2DS was developed and validated in a panel of 286 wheat cultivars. Because both Jingdong 8 and Aikang 58 have been leading cultivars and breeding parents, the QTL and marker reported represent valuable resources for wheat researchers and breeders.


Subject(s)
Disease Resistance , Quantitative Trait Loci , Triticum , Chromosome Mapping , Erysiphe/pathogenicity , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics
6.
Theor Appl Genet ; 136(3): 62, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36914894

ABSTRACT

KEY MESSAGE: We fine mapped RHT26 for plant height in wheat, confirmed its genetic effects in a panel of wheat cultivars and predicted candidate genes. Development of wheat cultivars with appropriate plant height (PH) is an important goal in breeding. Utilization of semi-dwarfing genes Rht-B1b and Rht-D1b triggered wheat Green Resolution in the 1960s. Since these genes also bring unfavorable features, such as reduced coleoptile length and grain weight, it is necessary to identify alternative reduced height genes without yield penalty. Here we constructed a high-density genetic map of a recombinant inbred line population derived from the cross of Zhongmai175 and Lunxuan987 and detected a stable genetic locus for PH, designated RHT26, on chromosome arm 3DL in all of six environments, accounting for 6.8-14.0% of the phenotypic variances. RHT26 was delimited to an approximate 1.4 Mb physical interval (517.1-518.5 Mb) using secondary mapping populations derived from 22 heterozygous recombinant plants and 24 kompetitive allele-specific PCR markers. Eleven high-confidence genes were annotated in the physical interval according to the Chinese Spring reference genome, and four of them were predicted as candidates for RHT26 based on genome and transcriptome sequencing analyses. We also confirmed that RHT26 had significant effects on PH, but not grain yield in a panel of wheat cultivars; its dwarfing allele has been frequently used in wheat breeding. These findings lay a sound foundation for map-based cloning of RHT26 and provide a breeding-applicable tool for marker-assisted selection.


Subject(s)
Plant Breeding , Triticum , Chromosome Mapping , Triticum/genetics , Genes, Plant , Cotyledon , Edible Grain/genetics , Phenotype
7.
Front Microbiol ; 13: 922660, 2022.
Article in English | MEDLINE | ID: mdl-35875525

ABSTRACT

Clubroot disease is a common soilborne disease caused by Plasmodiophora brassicas Wor. and widely occurs in Chinese cabbage. Soil microorganisms play vital roles in the occurrence and development of plant diseases. The changes in the soil bacterial community could indicate the severity of plant disease and provide the basis for its control. This study focused on the bacterial community of the clubroot disease-infected soil-root system with different severity aiming to reveal the composition and structure of soil bacteria and identified potential biomarker bacteria of the clubroot disease. In the clubroot disease-infected soil, the bacterial community is mainly composed of Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacilli, Thermolrophilia, Bacteroidia, Gemmatimonadetes, Subgroup_6, Deltaproteobacteria, KD4-96, and some other classes, while the major bacterial classes in the infected roots were Oxyphotobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacilli, Bacteroidia, Saccharimonadia, Thermoleophilia, Clostridia, Chloroflexia, and some other classes. The severe clubroot disease soil-root system was found to possess a poorer bacterial richness, evenness, and better coverage. Additionally, a significant difference was observed in the structure of the bacterial community between the high-severity (HR) and healthy (LR) soil-root system. Bacillus asahii and Noccaea caerulescens were identified as the differential bacteria between the LR and HR soil and roots, respectively. pH was demonstrated as a vital factor that was significantly associated with the abundance of B. asahii and N. caerulescens. This study provides novel insight into the relationship between soil bacteria and the pathogen of clubroot disease in Chinese cabbage. The identification of resistant species provides candidates for the monitoring and biocontrol of the clubroot disease.

8.
Microbiome ; 10(1): 83, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650642

ABSTRACT

BACKGROUND: In modern animal husbandry, breeders pay increasing attention to improving sow nutrition during pregnancy and lactation to favor the health of neonates. Sow milk is a main food source for piglets during their first three weeks of life, which is not only a rich repository of essential nutrients and a broad range of bioactive compounds, but also an indispensable source of commensal bacteria. Maternal milk microorganisms are important sources of commensal bacteria for the neonatal gut. Bacteria from maternal milk may confer a health benefit on the host. METHODS: Sow milk bacteria were isolated using culturomics followed by identification using 16S rRNA gene sequencing. To screen isolates for potential probiotic activity, the functional evaluation was conducted to assess their antagonistic activity against pathogens in vitro and evaluate their resistance against oxidative stress in damaged Drosophila induced by paraquat. In a piglet feeding trial, a total of 54 newborn suckling piglets were chosen from nine sows and randomly assigned to three treatments with different concentrations of a candidate strain. Multiple approaches were carried out to verify its antioxidant function including western blotting, enzyme activity analysis, metabolomics and 16S rRNA gene amplicon sequencing. RESULTS: The 1240 isolates were screened out from the sow milk microbiota and grouped into 271 bacterial taxa based on a nonredundant set of 16S rRNA gene sequencing. Among 80 Pediococcus isolates, a new Pediococcus pentosaceus strain (SMM914) showed the best performance in inhibition ability against swine pathogens and in a Drosophila model challenged by paraquat. Pretreatment of piglets with SMM914 induced the Nrf2-Keap1 antioxidant signaling pathway and greatly affected the pathways of amino acid metabolism and lipid metabolism in plasma. In the colon, the relative abundance of Lactobacillus was significantly increased in the high dose SMM914 group compared with the control group. CONCLUSION: P. pentosaceus SMM914 is a promising probiotic conferring antioxidant capacity by activating the Nrf2-Keap1 antioxidant signaling pathway in piglets. Our study provided useful resources for better understanding the relationships between the maternal microbiota and offspring. Video Abstract.


Subject(s)
Antioxidants , Milk , Animals , Antioxidants/analysis , Antioxidants/metabolism , Bacteria , Drosophila/genetics , Drosophila/metabolism , Female , Kelch-Like ECH-Associated Protein 1/analysis , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Paraquat/analysis , Paraquat/metabolism , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/metabolism , Pregnancy , RNA, Ribosomal, 16S/analysis , Swine
9.
Theor Appl Genet ; 134(10): 3279-3286, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34164708

ABSTRACT

KEY MESSAGE: We fine-mapped QBp.caas-3BL for black point resistance in an interval of 1.7 Mb containing five high-confidence annotated genes and developed a KASP marker suitable for selection of QBp.caas-3BL. Wheat black point, which occurs in most wheat-growing regions of the world, is detrimental to grain appearance, processing and nutrient quality. Mining and characterization of genetic loci for black point resistance are helpful for breeding resistant wheat cultivars. We previously identified a major QTL QBp.caas-3BL in a recombinant inbred line (RIL) population of Linmai 2/Zhong 892 across five environments. Here we confirmed the QTL in two additional environments. The genetic region of QBp.caas-3BL was enriched with newly developed markers. Using four sets of near isogenic lines, QBp.caas-3BL was narrowed down to a physical interval of approximately 1.7 Mb, including five annotated genes according to IWGSC reference genome. TraesCS3B02G404300, TraesCS3B02G404600 and TraesCS3B02G404700 were predicted as candidate genes based on the analyses of sequence polymorphisms and differential expression. We also converted a SNP of TraesCS3B02G404700 into a breeding-applicable KASP marker and verified its efficacy for marker-assisted breeding in a panel of germplasm. The findings not only lay a foundation for map-based cloning of QBp.caas-3BL but also provide a useful marker for selection of resistant cultivars genotypes in wheat breeding.


Subject(s)
Ascomycota/physiology , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Disease Resistance/immunology , Plant Diseases/immunology , Plant Proteins/metabolism , Triticum/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Genetic Loci , Phenotype , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Triticum/growth & development , Triticum/microbiology
10.
Biotechnol J ; 16(8): e2000575, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33484238

ABSTRACT

Microbial natural products among other functions they play a vital role in the disease prevention in humans, animals and plants. Pseudomonas parafulva CRS01-1 is a broad-spectrum antagonistic bacterium present in plants. However, no natural products have been isolated from this strain till date. Corresponding biosynthetic gene clusters to natural products is an effective method for bioprospecting, for which, genome manipulation tools are essential. We previously developed Pseudomonas-specific phage-derived homologous recombination systems for genetic engineering in four Pseudomonas species. Herein, we report the application of these recombineering systems in Pseudomonas parafulva CRS01-1, along with structural elucidation and bioactivity evaluation of natural products. The Pseudomonas recombineering toolbox established before in different four species is efficient for genome mining and bioactive metabolite discovery from more distant species.


Subject(s)
Biological Products , Biosynthetic Pathways , Biosynthetic Pathways/genetics , Genetic Engineering , Humans , Multigene Family , Pseudomonas/genetics
11.
Front Microbiol ; 12: 761189, 2021.
Article in English | MEDLINE | ID: mdl-35265047

ABSTRACT

Weaning of piglets could increase the risk of infecting with Gram-negative pathogens, which can further bring about a wide array of virulence factors including the endotoxin lipopolysaccharide (LPS). It is in common practice that the use of antibiotics has been restricted in animal husbandry. Alkaline phosphatase (AKP) plays an important role in the detoxification and anti-inflammatory effects of LPS. This study investigated the protective effects of AKP on intestinal epithelial cells during inflammation. Site-directed mutagenesis was performed to modulate the AKP activity. The enzyme activity tests showed that the activity of the DelSigD153G-D330N mutants in B. subtilis was nearly 1,600 times higher than that of the wild-type AKP. In this study, an in vitro LPS-induced inflammation model using IPEC-J2 cells was established. The mRNA expression of interleukin-(IL-) 6, IL-8, and tumor necrosis factor-α (TNF-α) were extremely significantly downregulated, and that of ASC amino acid transporter 2 (ASCT-2), zonula occludens protein-1 (ZO-1), and occludin-3 (CLDN-3) were significantly upregulated by the DelSigD153G-D330N mutant compared with LPS treatment. This concludes the anti-inflammatory role of AKP on epithelial membrane, and we are hopeful that this research could achieve a sustainable development for the pig industry.

12.
Plant Dis ; 105(5): 1339-1345, 2021 May.
Article in English | MEDLINE | ID: mdl-33107787

ABSTRACT

Fusarium head blight (FHB) is a destructive disease of wheat worldwide, particularly in China. To map genetic loci underlying FHB resistance, a doubled haploid (DH) population consisting of 174 lines was developed from a cross between widely grown Chinese cultivars Yangmai 16 and Zhongmai 895. The DH population and parents were evaluated in field nurseries at Wuhan in 2016 to 2017 and 2017 to 2018 crop seasons with both spray inoculation and natural infection, and at Jingzhou in 2017 to 2018 crop season with grain-spawn inoculation. The DH lines were genotyped with a wheat 660K SNP array. The FHB index, plant height, anther extrusion, and days to anthesis were recorded and used for quantitative trait loci (QTL) analysis. Seven QTL for FHB resistance were mapped to chromosome arms 3BL, 4AS, 4BS, 4DS, 5AL, 6AL, and 6BS in at least two environments. QFhb.caas-4BS and QFhb.caas-4DS co-located with semi-dwarfing alleles Rht-B1b and Rht-D1b, respectively, and were associated with anther extrusion. The other five QTL were genetically independent of the agronomic traits, indicating their potential value when breeding for FHB resistance. Based on correlations between FHB indices and agronomic traits in this population, we concluded that increasing plant height to some extent would enhance FHB resistance, that anther extrusion had a more important role in environments with less severe FHB, and that days to anthesis were independent of the FHB response when viewed across years. PCR-based markers were developed for the 3BL and 5AL QTL, which were detected in more than three environments. The InDel marker InDel_AX-89588684 for QFhb.caas-5AL was also validated on a wheat panel, confirming its effectiveness for marker-assisted breeding for improvements in FHB resistance.


Subject(s)
Fusarium , Bread , China , Chromosome Mapping , Haploidy , Plant Breeding , Plant Diseases/genetics , Quantitative Trait Loci/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...