Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Lab Invest ; 104(4): 100325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38220043

ABSTRACT

Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.


Subject(s)
Formaldehyde , Genetic Risk Score , Humans , Genotype , Tissue Fixation/methods , DNA/genetics , Paraffin Embedding/methods
3.
Nature ; 613(7944): 508-518, 2023 01.
Article in English | MEDLINE | ID: mdl-36653562

ABSTRACT

Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10-11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.


Subject(s)
Disease , Gene Frequency , Phenotype , Humans , Middle Aged , Disease/genetics , Estonia , Finland , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Meta-Analysis as Topic , United Kingdom , White People/genetics
4.
Epigenetics ; 17(11): 1432-1445, 2022 11.
Article in English | MEDLINE | ID: mdl-35213289

ABSTRACT

Essential hypertension remains the leading risk factor of global disease burden, but its treatment goals are often not met. We investigated whether DNA methylation is associated with antihypertensive responses to a diuretic, a beta-blocker, a calcium channel blocker or an angiotensin receptor antagonist. In addition, since we previously showed an SNP at the transcription start site (TSS) of the catecholamine biosynthesis-related ACY3 gene to associate with blood pressure (BP) response to beta-blockers, we specifically analysed the association of methylation sites close to the ACY3 TSS with BP responses to beta-blockers. We conducted an epigenome-wide association study between leukocyte DNA methylation and BP responses to antihypertensive monotherapies in two hypertensive Finnish cohorts: the GENRES (https://clinicaltrials.gov/ct2/show/NCT03276598; amlodipine 5 mg, bisoprolol 5 mg, hydrochlorothiazide 25 mg, or losartan 50 mg daily) and the LIFE-Fin studies (https://clinicaltrials.gov/ct2/show/NCT00338260; atenolol 50 mg or losartan 50 mg daily). The monotherapy groups consisted of approximately 200 individuals each. We identified 64 methylation sites to suggestively associate (P < 1E-5) with either systolic or diastolic BP responses to a particular study drug in GENRES. These associations did not replicate in LIFE-Fin . Three methylation sites close to the ACY3 TSS were associated with systolic BP responses to bisoprolol in GENRES but not genome-wide significantly (P < 0.05). No robust associations between DNA methylation and BP responses to four different antihypertensive drugs were identified. However, the findings on the methylation sites close to the ACY3 TSS may support the role of ACY3 genetic and epigenetic variation in BP response to bisoprolol.


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Antihypertensive Agents/therapeutic use , Cross-Over Studies , Losartan/therapeutic use , Bisoprolol/therapeutic use , Calcium Channel Blockers/therapeutic use , Atenolol/pharmacology , Atenolol/therapeutic use , DNA Methylation , Hypertension/drug therapy , Hypertension/genetics , Hydrochlorothiazide/therapeutic use , Amlodipine/therapeutic use , Diuretics/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Double-Blind Method , Catecholamines/therapeutic use , Treatment Outcome
5.
Neurol Genet ; 7(6): e632, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34722876

ABSTRACT

BACKGROUND AND OBJECTIVES: To determine the genetic cause of the disease in the previously reported family with adult-onset autosomal dominant distal myopathy (myopathy, distal, 3; MPD3). METHODS: Continued clinical evaluation including muscle MRI and muscle pathology. A linkage analysis with single nucleotide polymorphism arrays and genome sequencing were used to identify the genetic defect, which was verified by Sanger sequencing. RNA sequencing was used to investigate the transcriptional effects of the identified genetic defect. RESULTS: Small hand muscles (intrinsic, thenar, and hypothenar) were first involved with spread to the lower legs and later proximal muscles. Dystrophic changes with rimmed vacuoles and cytoplasmic inclusions were observed in muscle biopsies at advanced stage. A single nucleotide polymorphism array confirmed the previous microsatellite-based linkage to 8p22-q11 and 12q13-q22. Genome sequencing of three affected family members combined with structural variant calling revealed a small heterozygous deletion of 160 base pairs spanning the second last exon 10 of the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) gene, which is in the linked region on chromosome 12. Segregation of the mutation with the disease was confirmed by Sanger sequencing. RNA sequencing showed that the mutant allele produces a shorter mutant mRNA transcript compared with the wild-type allele. Immunofluorescence studies on muscle biopsies revealed small p62 and larger TDP-43 inclusions. DISCUSSION: A small exon 10 deletion in the gene HNRNPA1 was identified as the cause of MPD3 in this family. The new HNRNPA1-related phenotype, upper limb presenting distal myopathy, was thus confirmed, and the family displays the complexities of gene identification.

6.
Acta Neuropathol ; 142(2): 375-393, 2021 08.
Article in English | MEDLINE | ID: mdl-33974137

ABSTRACT

Using deep phenotyping and high-throughput sequencing, we have identified a novel type of distal myopathy caused by mutations in the Small muscle protein X-linked (SMPX) gene. Four different missense mutations were identified in ten patients from nine families in five different countries, suggesting that this disease could be prevalent in other populations as well. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. In our study all patients presented with highly similar clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.


Subject(s)
Distal Myopathies/pathology , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Mutation, Missense/genetics , Adult , Distal Myopathies/genetics , Humans , Inclusion Bodies/pathology , Middle Aged , Muscle Weakness/pathology , Pedigree , Stress Granules
7.
Clin Transl Allergy ; 10(1): 45, 2020.
Article in English | MEDLINE | ID: mdl-33133517

ABSTRACT

Genome wide association studies (GWASs) have revealed several airway disease-associated risk loci. Their role in the onset of asthma, allergic rhinitis (AR) or chronic rhinosinusitis (CRS), however, is not yet fully understood. The aim of this review is to evaluate the airway relevance of loci and genes identified in GWAS studies. GWASs were searched from databases, and a list of loci associating significantly (p < 10-8) with asthma, AR and CRS was created. This yielded a total of 267 significantly asthma/AR-associated loci from 31 GWASs. No significant CRS -associated loci were found in this search. A total of 170 protein coding genes were connected to these loci. Of these, 76/170 (44%) showed bronchial epithelial protein expression in stained microscopic figures of Human Protein Atlas (HPA), and 61/170 (36%) had a literature report of having airway epithelial function. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses were performed, and 19 functional protein categories were found as significantly (p < 0.05) enriched among these genes. These were related to cytokine production, cell activation and adaptive immune response, and all were strongly connected in network analysis. We also identified 15 protein pathways that were significantly (p < 0.05) enriched in these genes, related to T-helper cell differentiation, virus infection, JAK-STAT signaling pathway, and asthma. A third of GWAS-level risk loci genes of asthma or AR seemed to have airway epithelial functions according to our database and literature searches. In addition, many of the risk loci genes were immunity related. Some risk loci genes also related to metabolism, neuro-musculoskeletal or other functions. Functions overlapped and formed a strong network in our pathway analyses and are worth future studies of biomarker and therapeutics.

8.
PLoS One ; 14(5): e0217291, 2019.
Article in English | MEDLINE | ID: mdl-31120979

ABSTRACT

Acute kidney injury (AKI) is a syndrome that frequently affects the critically ill. Recently, an increased number of dinucleotide repeats in the HMOX1 gene were reported to associate with development of AKI in cardiac surgery. We aimed to test the replicability of this finding in a Finnish cohort of critically ill septic patients. This multicenter study was part of the national FINNAKI study. We genotyped 300 patients with severe AKI (KDIGO 2 or 3) and 353 controls without AKI (KDIGO 0) for the guanine-thymine (GTn) repeat in the promoter region of the HMOX1 gene. The allele calling was based on the number of repeats, the cut off being 27 repeats in the S-L (short to long) classification, and 27 and 34 repeats for the S-M-L2 (short to medium to very long) classification. The plasma concentrations of heme oxygenase-1 (HO-1) enzyme were measured on admission. The allele distribution in our patients was similar to that published previously, with peaks at 23 and 30 repeats. The S-allele increases AKI risk. An adjusted OR was 1.30 for each S-allele in an additive genetic model (95% CI 1.01-1.66; p = 0.041). Alleles with a repeat number greater than 34 were significantly associated with lower HO-1 concentration (p<0.001). In septic patients, we report an association between a short repeat in HMOX1 and AKI risk.


Subject(s)
Acute Kidney Injury/genetics , Heme Oxygenase-1/genetics , Minisatellite Repeats , Polymorphism, Genetic , Sepsis/genetics , Acute Kidney Injury/enzymology , Acute Kidney Injury/epidemiology , Aged , Alleles , Cohort Studies , Comorbidity , Critical Illness , Female , Finland/epidemiology , Genetic Predisposition to Disease , Genotype , Heme Oxygenase-1/blood , Humans , Male , Middle Aged , Promoter Regions, Genetic , Prospective Studies , Risk Factors , Sepsis/enzymology , Sepsis/epidemiology
9.
Pharmacogenomics ; 18(5): 445-458, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28353407

ABSTRACT

AIM: To replicate the genome-wide associations of the antihypertensive effects of bisoprolol and losartan in GENRES, using the Finnish patients of LIFE study. PATIENTS & METHODS: We analyzed association of four SNPs with atenolol and three SNPs with losartan response in 927 Finnish LIFE patients (467 for atenolol and 460 for losartan). RESULTS: rs2514036, a variation at a transcription start site of ACY3, was associated with blood pressure response to atenolol in men in LIFE. Response to bisoprolol was correlated to baseline plasma levels of N-acetylphenylalanine and phenylalanine (ACY3 substrate and end product, respectively) in GENRES study. NPHS1 variation rs3814995 was associated with losartan effect in LIFE. CONCLUSION: We provide support for two pharmacogenomic markers for beta-blockers and angiotensin receptor antagonists.


Subject(s)
Amidohydrolases/genetics , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Blood Pressure/genetics , Genetic Variation/genetics , Membrane Proteins/genetics , Aged , Aged, 80 and over , Cross-Over Studies , Double-Blind Method , Finland/epidemiology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Predictive Value of Tests , Prospective Studies , Treatment Outcome
10.
J Affect Disord ; 207: 136-140, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27721187

ABSTRACT

BACKGROUND: Dysfunctions in the intrinsic clocks are suggested in patients with depressive disorders. The cryptochrome circadian clocks 1 and 2 (CRY1 and CRY2) proteins modulate circadian rhythms in a cell and influence emotional reactions and mood in an individual. The protein kinase C delta binding protein (PRKCDBP, or CAVIN3), similar to the serum deprivation response protein (SDPR, or CAVIN2), reduces metabolic stability of the PER2-CRY2 transcription factor complex that plays a role in the circadian rhythm synchronization. Our aim was to study SDPR, PRKCDBP, CRY1 and CRY2 genetic variants in depressive disorders. METHODS: The sample included 5910 Finnish individuals assessed with the Munich-Composite International Diagnostic Interview (M-CIDI) in year 2000. In year 2011, 3424 individuals were assessed again. After genotype quality control, there were 383 subjects with major depressive disorder, 166 with dysthymia, and 479 with depressive disorders (major depressive disorder, dysthymia or both), and 4154 healthy controls. A total of 48 single-nucleotide polymorphisms from SDPR, PRKCDBP, CRY1 and CRY2 genes were analyzed using logistic regression models controlling for age and gender. RESULTS: The earlier reported association of CRY2 variants with dysthymia was confirmed and extended to major depressive disorder (q<0.05). In addition, novel associations of PRKCDBP rs1488864 with depressive disorders (q=0.02) and with major depressive disorder in specific (q=0.007) were found. LIMITATIONS: The number of cases was moderate and coverage of PRKCDB was limited. CONCLUSIONS: CRY2 and PRKCDBP variants may be risk factors of major depressive disorder and provide information for diagnosis.


Subject(s)
Cryptochromes/genetics , Depressive Disorder, Major/genetics , Dysthymic Disorder/genetics , Intracellular Signaling Peptides and Proteins/genetics , Adult , Aged , Aged, 80 and over , Carrier Proteins/genetics , Circadian Rhythm/genetics , Female , Genotype , Humans , Male , Middle Aged , Phosphate-Binding Proteins , Polymorphism, Single Nucleotide
11.
Psychiatry Res ; 242: 101-110, 2016 Aug 30.
Article in English | MEDLINE | ID: mdl-27267441

ABSTRACT

Cryptochromes are key components of the circadian clocks that generate and maintain seasonal variations. The aim of our study was to analyze the associations of CRY1 and CRY2 genetic variants with the problematicity of seasonal variations, and whether the problematicity of seasonal variations changed during the follow-up of 11 years. Altogether 21 CRY1 and 16 CRY2 single-nucleotide polymorphisms (SNPs) were genotyped and analyzed in 5910 individuals from a Finnish nationwide population-based sample who had filled in the self-report on the seasonal variations in mood and behavior in the year 2000. In the year 2011, 3356 of these individuals filled in the same self-report on the seasonal variations in mood and behavior. Regression models were used to test whether any of the SNPs associated with the problematicity of seasonal variations or with a change in the problematicity from 2000 to 2011. In the longitudinal analysis, CRY2 SNP rs61884508 was protective from worsening of problematicity of seasonal variations. In the cross-sectional analysis, CRY2 SNP rs72902437 showed evidence of association with problematicity of seasonal variations, as did SNP rs1554338 (in the MAPK8IP1 and downstream of CRY2).


Subject(s)
Circadian Rhythm/genetics , Cryptochromes/genetics , Seasonal Affective Disorder/genetics , Seasons , Adult , Case-Control Studies , Circadian Clocks/genetics , Cross-Sectional Studies , Female , Follow-Up Studies , Genotype , Humans , Longitudinal Studies , Male , Middle Aged , Polymorphism, Single Nucleotide , Prospective Studies , Regression Analysis
12.
J Hypertens ; 33(11): 2278-85, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26425837

ABSTRACT

OBJECTIVE: The aim of this study is to identify single-nucleotide polymorphisms (SNPs) influencing blood pressure (BP) response to the ß-blocker atenolol. METHODS: Genome-wide association analysis of BP response to atenolol monotherapy was performed in 233 white participants with uncomplicated hypertension in the pharmacogenomic evaluation of antihypertensive responses study. Forty-two polymorphisms with P less than 10 for association with either diastolic or systolic response to atenolol monotherapy were validated in four independent groups of hypertensive individuals (total n = 2114). RESULTS: In whites, two polymorphisms near the gene PTPRD (rs12346562 and rs1104514) were associated with DBP response to atenolol (P = 3.2 × 10 and P = 5.9 × 10, respectively) with directionally opposite association for response to hydrochlorothiazide in another group of 228 whites (P = 0.0018 and P = 0.00012). A different polymorphism (rs10739150) near PTPRD was associated with response to atenolol in 150 black hypertensive individuals (P = 8.25 × 10). rs12346562 had a similar trend in association with response to bisoprolol (a different ß-blocker) in 207 Finnish men in the genetics of drug responsiveness in essential hypertension study. In addition, an intronic single-nucleotide polymorphism (rs4742610) in the PTPRD gene was associated with resistant hypertension in whites and Hispanics in the international verapamil SR trandolapril study (meta-analysis P = 3.2 × 10). CONCLUSION: PTPRD was identified as a novel locus potentially associated with BP response to atenolol and resistant hypertension in multiple ethnic groups.


Subject(s)
Antihypertensive Agents/therapeutic use , Atenolol/therapeutic use , Blood Pressure/drug effects , Blood Pressure/genetics , Hypertension/drug therapy , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Adrenergic beta-Antagonists/therapeutic use , Adult , Aged , Black People/genetics , Essential Hypertension , Female , Genome-Wide Association Study , Humans , Hypertension/genetics , Male , Middle Aged , Pharmacogenetics , Polymorphism, Single Nucleotide , White People/genetics
13.
PLoS One ; 10(10): e0141001, 2015.
Article in English | MEDLINE | ID: mdl-26509718

ABSTRACT

SIRT1 polymorphisms have previously been associated with depressive and anxiety disorders. We aimed at confirming these earlier findings and extending the analyses to seasonal variations in mood and behavior. Three tag single-nucleotide polymorphisms (SNPs) were selected to capture the common variation in the SIRT1 gene. 5910 individuals (with blood sample, diagnostic interview, self-report of on seasonal changes in mood and behavior) were selected from a representative Finnish nationwide population-based sample. Logistic and linear regression models were used to analyze the associations between the SNPs and depressive and anxiety disorders, metabolic syndrome (EGIR criteria) and its components, and health examination measurements, Homeostasis Model Assessments, and diagnoses of type 2 and type 1 diabetes. SIRT1 rs2273773 showed evidence of association with seasonal variation in weight (C-allele, OR = 0.85, 95% CI = 0.76-0.95, p = 0.005). In addition, our study gave further support for the association of SIRT1 gene with depressive disorders (rs3758391) and diastolic blood pressure (rs2273773).


Subject(s)
Blood Pressure/genetics , Blood Pressure/physiology , Depressive Disorder/genetics , Depressive Disorder/physiopathology , Polymorphism, Single Nucleotide/genetics , Sirtuin 1/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , Seasons
14.
PLoS One ; 10(7): e0134188, 2015.
Article in English | MEDLINE | ID: mdl-26214689

ABSTRACT

Allergic rhinitis (AR) is a common and complex disease. It is associated with environmental as well as genetic factors. Three recent genome-wide association studies (GWAS) reported altogether 47 single nucleotide polymorphisms (SNPs) associated with AR or allergic sensitization (AS) in Europeans and North Americans. Two follow up studies in Swedish and Chinese replicated 15 associations. In these studies individuals were selected based on the self-reported AR, or AR/AS diagnosed using blood IgE test or skin prick test (SPT), which were performed often without restriction to specific allergens. Here we performed third replication study in Lithuanians. We used SPT and carefully selected set of allergens prevalent in Lithuania, as well as Illumina Core Exome chip for SNP detection. We genotyped 270 SPT-positive individuals (137 Betulaceae -, 174 Poaceae-, 199 Artemisia-, 70 Helianthus-, 22 Alternaria-, 22 Cladosporium-, 140 mites-, 95 cat- and 97 dog dander-sensitive cases) and 162 SPT-negative controls. We found altogether 13 known SNPs associated with AS (p ≤0.05). Three SNPs were found in Lithuanians sensitive to several allergens, and 10 SNPs were found in Lithuanians sensitive to a certain allergen. For the first time, SNP rs7775228:C was associated with patient sensitivity to dog allergens (F_A=0,269, F_U=0.180, P=0.008). Thus, careful assessment of AS allowed us to detect known genetic variants associated with AS/AR in relatively small cohort of Lithuanians.


Subject(s)
Exome , Genetic Loci , Polymorphism, Single Nucleotide , Rhinitis, Allergic/genetics , Allergens/immunology , Animals , Cats , Dogs , Female , Humans , Lithuania/epidemiology , Male , Rhinitis, Allergic/epidemiology , Rhinitis, Allergic/immunology
15.
J Hypertens ; 33(6): 1301-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25695618

ABSTRACT

BACKGROUND: Thiazide diuretics have been recommended as a first-line antihypertensive treatment, although the choice of 'the right drug in the individual essential hypertensive patient' remains still empirical. Essential hypertension is a complex, polygenic disease derived from the interaction of patient's genetic background with the environment. Pharmacogenomics could be a useful tool to pinpoint gene variants involved in antihypertensive drug response, thus optimizing therapeutic advantages and minimizing side effects. METHODS AND RESULTS: We looked for variants associated with blood pressure response to hydrochlorothiazide over an 8-week follow-up by means of a genome-wide association analysis in two Italian cohorts of never-treated essential hypertensive patients: 343 samples from Sardinia and 142 from Milan. TET2 and CSMD1 as plausible candidate genes to affect SBP response to hydrochlorothiazide were identified. The specificity of our findings for hydrochlorothiazide was confirmed in an independent cohort of essential hypertensive patients treated with losartan. Our best findings were also tested for replication in four independent hypertensive samples of European Ancestry, such as GENetics of drug RESponsiveness in essential hypertension, Genetic Epidemiology of Responses to Antihypertensives, NORdic DILtiazem intervention, Pharmacogenomics Evaluation of Antihypertensive Responses, and Campania Salute Network-StayOnDiur. We validated a polymorphism in CSMD1 and UGGT2. CONCLUSION: This exploratory study reports two plausible loci associated with SBP response to hydrochlorothiazide: TET2, an aldosterone-responsive mediator of αENaC gene transcription; and CSMD1, previously described as associated with hypertension in a case-control study.


Subject(s)
Antihypertensive Agents/therapeutic use , DNA-Binding Proteins/genetics , Hydrochlorothiazide/therapeutic use , Hypertension/drug therapy , Hypertension/genetics , Membrane Proteins/genetics , Proto-Oncogene Proteins/genetics , Sodium Chloride Symporter Inhibitors/therapeutic use , Adult , Aged , Aldosterone/pharmacology , Blood Pressure/drug effects , Blood Pressure/genetics , Case-Control Studies , Dioxygenases , Essential Hypertension , Genome-Wide Association Study , Humans , Italy , Losartan/therapeutic use , Male , Middle Aged , Pharmacogenetics , Systole/genetics , Tumor Suppressor Proteins , White People
16.
J Am Heart Assoc ; 4(1): e001521, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25622599

ABSTRACT

BACKGROUND: Identification of genetic markers of antihypertensive drug responses could assist in individualization of hypertension treatment. METHODS AND RESULTS: We conducted a genome-wide association study to identify gene loci influencing the responsiveness of 228 male patients to 4 classes of antihypertensive drugs. The Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study is a double-blind, placebo-controlled cross-over study where each subject received amlodipine, bisoprolol,hydrochlorothiazide, and losartan, each as a monotherapy, in a randomized order. Replication analyses were performed in 4 studies with patients of European ancestry (PEAR Study, N=386; GERA I and II Studies, N=196 and N=198; SOPHIA Study, N=372). We identified 3 single-nucleotide polymorphisms within the ACY3 gene that showed associations with bisoprolol response reaching genome-wide significance (P<5x10(-8))however, this could not be replicated in the PEAR Study using atenolol. In addition, 39 single-nucleotide polymorphisms showed P values of 10(-5) to 10(-7). The 20 top-associated single-nucleotide polymorphisms were different for each antihypertensive drug. None of these top single-nucleotide polymorphisms co-localized with the panel of >40 genes identified in genome-wide association studies of hypertension. Replication analyses of GENRES results provided suggestive evidence for a missense variant (rs3814995) in the NPHS1 (nephrin) gene influencing losartan response, and for 2 variants influencing hydrochlorothiazide response, located within or close to the ALDH1A3 (rs3825926) and CLIC5 (rs321329) genes. CONCLUSIONS: These data provide some evidence for a link between biology of the glomerular protein nephrin and antihypertensive action of angiotensin receptor antagonists and encourage additional studies on aldehyde dehydrogenase­mediated reactions in antihypertensive drug action.


Subject(s)
Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Hypertension/genetics , Membrane Proteins/genetics , Pharmacogenetics/methods , Adult , Aldehyde Oxidoreductases/genetics , Amlodipine/therapeutic use , Antihypertensive Agents/pharmacology , Benzimidazoles/therapeutic use , Biphenyl Compounds , Bisoprolol/therapeutic use , Blood Pressure Monitoring, Ambulatory , Chloride Channels/genetics , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Essential Hypertension , Finland , Genome-Wide Association Study , Humans , Hydrochlorothiazide/therapeutic use , Hypertension/diagnosis , Losartan/therapeutic use , Male , Meta-Analysis as Topic , Microfilament Proteins/genetics , Middle Aged , Mutation, Missense , Polymorphism, Single Nucleotide , Severity of Illness Index , Tetrazoles/therapeutic use , Treatment Outcome
17.
Hypertens Res ; 38(3): 186-92, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25391456

ABSTRACT

The circadian clock affects metabolic cycles, and there is a link between circadian clock genes and metabolic syndrome. Therefore, we wanted to investigate whether variants of the core circadian clock genes, cryptochrome circadian clocks 1 and 2 (CRY1 and CRY2), or those of protein kinase C, delta binding protein (PRKCDBP), which regulate the interactions and abundance of dimers of the period and cryptochrome proteins, are associated with metabolic syndrome or its components. The association of 48 single-nucleotide polymorphisms (SNPs) from CRY1, CRY2 and PRKCDBP genes with metabolic disorder or its components was analyzed in a sample of 5910 individuals. Genotyping was performed using the Sequenom MassARRAY system. SNPs and haplotypes were analyzed using linear or logistic regression with additive models controlling for age and sex. Continuous phenotypes were permuted 10,000 times. False discovery rate q-values were calculated to correct for multiple testing. Overall, CRY1 and CRY2 variants showed nominal association with the metabolic syndrome components, hypertension and triglyceride levels, and one CRY2 variant had an association with metabolic syndrome, although none of these associations yielded significant q-values. However, the haplotype analysis of these variants supported the association of CRY1 with arterial hypertension and elevated blood pressure. Further studies are warranted regarding the role of CRY1 in cardiovascular diseases.


Subject(s)
Cryptochromes/genetics , Genetic Variation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Metabolic Syndrome/genetics , Adult , Aged , Aged, 80 and over , Female , Genotype , Haplotypes , Humans , Hypertension/genetics , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics
18.
Hum Mutat ; 35(12): 1418-26, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25205138

ABSTRACT

A mutation update on the nebulin gene (NEB) is necessary because of recent developments in analysis methodology, the identification of increasing numbers and novel types of variants, and a widening in the spectrum of clinical and histological phenotypes associated with this gigantic, 183 exons containing gene. Recessive pathogenic variants in NEB are the major cause of nemaline myopathy (NM), one of the most common congenital myopathies. Moreover, pathogenic NEB variants have been identified in core-rod myopathy and in distal myopathies. In this update, we present the disease-causing variants in NEB in 159 families, 143 families with NM, and 16 families with NM-related myopathies. Eighty-eight families are presented here for the first time. We summarize 86 previously published and 126 unpublished variants identified in NEB. Furthermore, we have analyzed the NEB variants deposited in the Exome Variant Server (http://evs.gs.washington.edu/EVS/), identifying that pathogenic variants are a minor fraction of all coding variants (∼7%). This indicates that nebulin tolerates substantial changes in its amino acid sequence, providing an explanation as to why variants in such a large gene result in relatively rare disorders. Lastly, we discuss the difficulties of drawing reliable genotype-phenotype correlations in NEB-associated disease.


Subject(s)
Muscle Proteins/genetics , Muscular Diseases/genetics , Mutation , Alternative Splicing , Animals , Chromosomes, Human, Pair 2 , Databases, Genetic , Exons , Genotype , Humans , Models, Animal , Muscular Diseases/classification , Phenotype
19.
PLoS One ; 8(8): e71450, 2013.
Article in English | MEDLINE | ID: mdl-23951166

ABSTRACT

People with mood disorders often have disruptions in their circadian rhythms. Recent molecular genetics has linked circadian clock genes to mood disorders. Our objective was to study two core circadian clock genes, CRY1 and CRY2 as well as TTC1 that interacts with CRY2, in relation to depressive and anxiety disorders. Of these three genes, 48 single-nucleotide polymorphisms (SNPs) whose selection was based on the linkage disequilibrium and potential functionality were genotyped in 5910 individuals from a nationwide population-based sample. The diagnoses of major depressive disorder, dysthymia and anxiety disorders were assessed with a structured interview (M-CIDI). In addition, the participants filled in self-report questionnaires on depressive and anxiety symptoms. Logistic and linear regression models were used to analyze the associations of the SNPs with the phenotypes. Four CRY2 genetic variants (rs10838524, rs7121611, rs7945565, rs1401419) associated significantly with dysthymia (false discovery rate q<0.05). This finding together with earlier CRY2 associations with winter depression and with bipolar type 1 disorder supports the view that CRY2 gene has a role in mood disorders.


Subject(s)
Anxiety Disorders/genetics , Cryptochromes/genetics , Depressive Disorder/genetics , Polymorphism, Single Nucleotide , Adaptor Proteins, Vesicular Transport/genetics , Adult , Circadian Clocks , Female , Heterotrimeric GTP-Binding Proteins/genetics , Humans , Male
20.
Hypertension ; 62(2): 391-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23753411

ABSTRACT

To identify novel genes influencing blood pressure response to thiazide diuretic therapy for hypertension, we conducted genome-wide association meta-analyses of ≈1.1 million single-nucleotide polymorphisms in a combined sample of 424 European Americans with primary hypertension treated with hydrochlorothiazide from the Pharmacogenomic Evaluation of Antihypertensive Responses study (n=228) and the Genetic Epidemiology of Responses to Antihypertensive study (n=196). Polymorphisms associated with blood pressure response at P<10(-5) were tested for replication of the associations in independent samples of hydrochlorothiazide-treated European hypertensives. The rs16960228 polymorphism in protein kinase C, α replicated for same-direction association with diastolic blood pressure response in the Nordic Diltiazem study (n=420) and the Genetics of Drug Responsiveness in Essential Hypertension study (n=206), and the combined 4-study meta-analysis P value achieved genome-wide significance (P=3.3 × 10(-8)). Systolic or diastolic blood pressure responses were consistently greater in carriers of the rs16960228 A allele than in GG homozygotes (>4/4 mm Hg) across study samples. The rs2273359 polymorphism in the GNAS-EDN3 region also replicated for same-direction association with systolic blood pressure response in the Nordic Diltiazem study, and the combined 3-study meta-analysis P value approached genome-wide significance (P=5.5 × 10(-8)). The findings document clinically important effects of genetic variation at novel loci on blood pressure response to a thiazide diuretic, which may be a basis for individualization of antihypertensive drug therapy and identification of new drug targets.


Subject(s)
Antihypertensive Agents/therapeutic use , Diuretics/therapeutic use , Genome-Wide Association Study , Hydrochlorothiazide/therapeutic use , Hypertension/drug therapy , Polymorphism, Single Nucleotide , Adult , Atenolol/therapeutic use , Blood Pressure/drug effects , Chromosomes, Human, Pair 17 , Female , Humans , Hypertension/genetics , Male , Middle Aged , Protein Kinase C-alpha/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...