Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 275, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672417

ABSTRACT

The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation - GEBCO Seabed 2030 Project supporting the goal of mapping the world's oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S.

2.
Sci Data ; 7(1): 176, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647176

ABSTRACT

Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∼19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∼14.3% in Ver. 4.0 compared to ∼5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet.

3.
HardwareX ; 7: e00102, 2020 Apr.
Article in English | MEDLINE | ID: mdl-35495214

ABSTRACT

Imaging underwater can be particularly problematic and expensive given the harsh environmental conditions posed by salinity and for some deployments, pressure. To counter these difficulties, expensive waterproof pressure resistant housings are often used, commonly built from expensive materials such as titanium, if intended for long duration deployments. Further, environmental investigations often benefit from replicate data collection, which additionally increases study costs. In this paper we present a new camera system, developed with off the shelf and 3D printed cost effective components for use in shallow waters of <150 m depth. Integrating Raspberry Pi Zero W microcomputers with open source design files and software, it is hoped these camera systems will be of interest to the global marine and freshwater research communities.

4.
Ecol Evol ; 9(10): 5664-5682, 2019 May.
Article in English | MEDLINE | ID: mdl-31160989

ABSTRACT

This study investigates the distribution of Antarctic minke whales (AMW) in relation to sea ice concentration and variations therein. Information on AMW densities in the sea ice-covered parts of the Southern Ocean is required to contextualize abundance estimates obtained from circumpolar shipboard surveys in open waters, suggesting a 30% decline in AMW abundance. Conventional line-transect shipboard surveys for density estimation are impossible in ice-covered regions, therefore we used icebreaker-supported helicopter surveys to obtain information on AMW densities along gradients of 0%-100% of ice concentration. We conducted five helicopter surveys in the Southern Ocean, between 2006 and 2013. Distance sampling data, satellite-derived sea-ice data, and bathymetric parameters were used in generalized additive models (GAMs) to produce predictions on how the density of AMWs varied over space and time, and with environmental covariates. Ice concentration, distance to the ice edge and distance from the shelf break were found to describe the distribution of AMWs. Highest densities were predicted at the ice edge and through to medium ice concentrations. Medium densities were found up to 500 km into the ice edge in all concentrations of ice. Very low numbers of AMWs were found in the ice-free waters of the West Antarctic Peninsula (WAP). A consistent relationship between AMW distribution and sea ice concentration weakens the support for the hypothesis that varying numbers of AMWs in ice-covered waters were responsible for observed changes in estimated abundance. The potential decline in AMW abundance stresses the need for conservation measures and further studies into the AMW population status. Very low numbers of AMWs recorded in the ice-free waters along the WAP support the hypothesis that this species is strongly dependent on sea ice and that forecasted sea ice changes have the potential of heavily impacting AMWs.

5.
R Soc Open Sci ; 6(3): 182053, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31032050

ABSTRACT

This comment presents acoustic and visual data showing deep seafloor depression chains similar to those reported in Marsh et al. (R. Soc. open sci. 5: 180286), though from a different deep-sea setting. Marsh et al. present data collected during cruise JC120 from polymetallic nodule rich sites within the Clarion-Clipperton Fracture Zone (CCFZ), at water depths of between 3999 and 4258 m. Within this comment, we present data collected with equivalent acoustic and imaging devices on-board the RV Sonne (SO261-March/April 2018) from the Atacama Trench, approximately 4000 m depth, which shows comparable depression chains in the seafloor. In contrast with the CCFZ observations, our study area was wholly free of polymetallic nodules, an observation therefore weakening the 'ballast collection' by deep-sea diving mammals formation hypothesis discussed in their paper. We support their alternate hypothesis that if these features are indeed generated by deep-diving megafauna, then they are more likely the resultant traces of infauna feeding or marks made during opportunistic capture of benthic fish/cephalopods. We observed these potential prey fauna with lander and towed camera systems during the cruise, with example images of these presented here. Both the SO261 and JC120 cruises employed high-resolution sidescan systems at deployment altitudes seldom used routinely until the last few years during scientific deep-sea surveys. Given that both cruises found these depression chains in contrasting physical regions of the East Pacific, they may have a more ubiquitous distribution than at just these sites. Thus, the impacts of cetacean foraging behaviour on deep seafloor communities, and the potential relevance of these prey sources to deep-diving species, should be considered.

6.
Sci Rep ; 6: 33163, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27694889

ABSTRACT

Global biodiversity is in decline, with the marine environment experiencing significant and increasing anthropogenic pressures. In response marine protected areas (MPAs) have increasingly been adopted as the flagship approach to marine conservation, many covering enormous areas. At present, however, the lack of biological sampling makes prioritising which regions of the ocean to protect, especially over large spatial scales, particularly problematic. Here we present an interdisciplinary approach to marine landscape mapping at the sub-Antarctic island of South Georgia as an effective protocol for underpinning large-scale (105-106 km2) MPA designations. We have developed a new high-resolution (100 m) digital elevation model (DEM) of the region and integrated this DEM with bathymetry-derived parameters, modelled oceanographic data, and satellite primary productivity data. These interdisciplinary datasets were used to apply an objective statistical approach to hierarchically partition and map the benthic environment into physical habitats types. We assess the potential application of physical habitat classifications as proxies for biological structuring and the application of the landscape mapping for informing on marine spatial planning.

SELECTION OF CITATIONS
SEARCH DETAIL
...