Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 128(31): 7486-7499, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39072475

ABSTRACT

The enzyme PETase fromIdeonella sakaiensis (IsPETase) strain 201-F6 can catalyze the hydrolysis of polyethylene terephthalate (PET), mainly converting it into mono(2-hydroxyethyl) terephthalic acid (MHET). In this study, we used quantum mechanics/molecular mechanics (QM/MM) simulations to explore the molecular details of the catalytic reaction mechanism of IsPETase in the formation of MHET. The QM region was described with AM1d/PhoT and M06-2X/6-31+G(d,p) potential. QM/MM simulations unveil the complete enzymatic PET hydrolysis mechanism and identify two possible reaction pathways for acylation and deacylation steps. The barrier obtained at M06-2X/6-31+G(d,p)/MM potential for the deacylation step corresponds to 20.4 kcal/mol, aligning with the experimental value of 18 kcal/mol. Our findings indicate that deacylation is the rate-limiting step of the process. Furthermore, per-residue interaction energy contributions revealed unfavorable contributions to the transition state of amino acids located at positions 200-230, suggesting potential sites for targeted mutations. These results can contribute to the development of more active and selective enzymes for PET depolymerization.


Subject(s)
Polyethylene Terephthalates , Quantum Theory , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Molecular Dynamics Simulation , Burkholderiales/enzymology , Burkholderiales/metabolism , Hydrolysis , Biodegradation, Environmental , Biocatalysis , Acylation
2.
J Chem Inf Model ; 62(17): 4083-4094, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36044342

ABSTRACT

We have used molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials to investigate the reaction mechanism for covalent inhibition of cathepsin K and assess the reversibility of inhibition. The computed free energy profiles suggest that a nucleophilic attack by the catalytic cysteine on the inhibitor warhead and proton transfer from the catalytic histidine occur in a concerted manner. The results indicate that the reaction is more strongly exergonic for the alkyne-based inhibitors, which bind irreversibly to cathepsin K, than for the nitrile-based inhibitor odanacatib, which binds reversibly. Gas-phase energies were also calculated for the addition of methanethiol to structural prototypes for a number of warheads of interest in cysteine protease inhibitor design in order to assess electrophilicity. The approaches presented in this study are particularly applicable to assessment of novel warheads, and computed transition state geometries can be incorporated into molecular models for covalent docking.


Subject(s)
Cysteine Proteinase Inhibitors , Molecular Dynamics Simulation , Catalysis , Cathepsin K/metabolism , Cysteine Proteinase Inhibitors/chemistry , Protease Inhibitors , Quantum Theory
3.
Proteins ; 89(10): 1340-1352, 2021 10.
Article in English | MEDLINE | ID: mdl-34075621

ABSTRACT

Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 (IsPETase) catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of IsPETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interactions of PET in the active site of IsPETase remain unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of IsPETase induced by PET binding. Results from the essential dynamics revealed that the ß1-ß2 connecting loop is very flexible. This loop is located far from the active site of IsPETase and we suggest that it can be considered for mutagenesis to increase the thermal stability of IsPETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbound to the bound state is associated with the ß7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the IsPETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling plastic polymers using biological systems.


Subject(s)
Bacterial Proteins/metabolism , Burkholderiales/metabolism , Hydrolases/metabolism , Polyethylene Terephthalates/metabolism , Biocatalysis , Hydrolysis
4.
J Chem Inf Model ; 60(2): 880-889, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31944110

ABSTRACT

One tactic for cysteine protease inhibition is to form a covalent bond between an electrophilic atom of the inhibitor and the thiol of the catalytic cysteine. In this study, we evaluate the reaction free energy obtained from a hybrid quantum mechanical/molecular mechanical (QM/MM) free energy profile as a predictor of affinity for reversible, covalent inhibitors of rhodesain. We demonstrate that the reaction free energy calculated with the PM6/MM potential is in agreement with the experimental data and suggest that the free energy profile for covalent bond formation in a protein environment may be a useful tool for the inhibitor design.


Subject(s)
Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/metabolism , Quantum Theory , Cysteine Proteases/chemistry , Ligands , Models, Molecular , Protein Conformation , Thermodynamics
5.
Curr Comput Aided Drug Des ; 16(5): 605-617, 2020.
Article in English | MEDLINE | ID: mdl-31654518

ABSTRACT

BACKGROUND: Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an enzyme that isomerizes phosphorylated serine or threonine motifs adjacent to proline residues. Pin1 has important roles in several cellular signaling pathways, consequently impacting the development of multiple types of cancers. METHODS: Based on the previously reported inhibitory activity of pentacyclic triterpenoids isolated from the gum resin of Boswellia genus against Pin1, we designed a computational experiment using molecular docking, pharmacophore filtering, and structural clustering allied to molecular dynamics (MD) simulations and binding free energy calculations to explore the inhibitory activity of new triterpenoids against Pin1 structure. RESULTS: Here, we report different computational evidence that triterpenoids from neem (Azadirachta indica A. Juss), such as 6-deacetylnimbinene, 6-Oacetylnimbandiol, and nimbolide, replicate the binding mode of the Pin1 substrate peptide, interacting with high affinity with the binding site and thus destabilizing the Pin1 structure. CONCLUSIONS: Our results are supported by experimental data, and provide interesting structural insights into their molecular mechanism of action, indicating that their structural scaffolds could be used as a start point to develop new inhibitors against Pin1.


Subject(s)
Antineoplastic Agents/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , Binding Sites , Drug Design , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Triterpenes
6.
J Biomol Struct Dyn ; 37(16): 4374-4383, 2019 10.
Article in English | MEDLINE | ID: mdl-30470158

ABSTRACT

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is mainly involved in the regulation of cholesterol biosynthesis. HMGR catalyses the reduction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate at the expense of two NADPH molecules in a two-step reversible reaction. In the present study, we constructed a model of human HMGR (hHMGR) to explore the conformational changes of HMGR in complex with HMG-CoA and NADPH. In addition, we analysed the complete sequence of the Flap domain using molecular dynamics (MD) simulations and principal component analysis (PCA). The simulations revealed that the Flap domain plays an important role in catalytic site activation and substrate binding. The apo form of hHMGR remained in an open state, while a substrate-induced closure of the Flap domain was observed for holo hHMGR. Our study also demonstrated that the phosphorylation of Ser872 induces significant conformational changes in the Flap domain that lead to a complete closure of the active site, suggesting three principal conformations for the first stage of hHMGR catalysis. Our results were consistent with previous proposed models for the catalytic mechanism of hHMGR. Communicated by Ramaswamy H. Sarma.


Subject(s)
Computational Biology , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/chemistry , Protein Binding/genetics , Protein Conformation , Amino Acid Sequence/genetics , Binding Sites , Catalytic Domain/genetics , Humans , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/ultrastructure , Phosphorylation/genetics , Substrate Specificity
7.
J Phys Chem B ; 121(37): 8626-8637, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28829128

ABSTRACT

Enolpyruvyl transfer from phosphoenolpyruvate (PEP) to the hydroxyl group of shikimate-5-OH-3-phosphate (S3P) is catalyzed by 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase in a reaction that involves breaking the C-O bond of PEP. Catalysis involves an addition-elimination mechanism with the formation of a tetrahedral intermediate (THI). Experiments have elucidated the mechanism of THI formation and breakdown. However, the catalytic action of EPSP synthase and the individual roles of catalytic residues Asp313 and Glu341 remains unclear. We have used a hybrid quantum mechanical/molecular mechanical (QM/MM) approach to explore the free energy surface in a reaction catalyzed by EPSP synthase. The Glu341 was the most favorable acid/base catalyst. Our results indicate that the protonation of PEP C3 precedes the nucleophilic attack on PEP C2 in the addition mechanism. Also, the breaking of the C-O bond of THI to form an EPSP cation intermediate must occur before proton transfer from PEP C3 to Glu341 in the elimination mechanism. Analysis of the FES supports cationic intermediate formation during the reaction catalyzed by EPSP synthase. Finally, the computational model indicates a proton transfer shift (Hammond shift) from Glu341 to C3 for an enzyme-based reaction with the shifted transition state, earlier than in the reference reaction in water.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Molecular Dynamics Simulation , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , Biocatalysis , Molecular Conformation , Quantum Theory , Thermodynamics
8.
Chem Biol Drug Des ; 89(4): 599-607, 2017 04.
Article in English | MEDLINE | ID: mdl-27736019

ABSTRACT

UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is one of the key enzymes involved in peptidoglycan biosynthesis. The peptide HESFWYLPHQSY (called PEP 1354) is an inhibitor of MurA with an IC50 value of 200 µm. In this article, we have used the FlexPepDock ab-initio protocol from the Rosetta program homology modeling and molecular dynamics simulations to analyze, for the first time, the interaction of the PEP 1354 peptide with MurA enzyme from Pseudomonas aeruginosa (MurA-PA). Our modeling results suggest that the peptide binds to the same active site as the natural substrate UDP-N-acetylglucosamine (UNAG). Additionally, the MurA-peptide complex revealed that the peptide seems to prevent the closure of the Pro114-123 loop and, consequently, the open-closed transition of the MurA structure.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Pseudomonas aeruginosa/enzymology , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Amino Acid Sequence , Catalytic Domain , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL