Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Med Chem Lett ; 10(1): 80-85, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655951

ABSTRACT

Potent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies. The lead cyanamide-based inhibitors demonstrated excellent kinome selectivity and rat pharmacokinetic properties.

2.
Nat Chem Biol ; 10(9): 760-767, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25038787

ABSTRACT

Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Proteome/genetics , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Cell Line, Tumor , Cell Survival/drug effects , Cysteine/chemistry , Genes, erbB-1/genetics , Humans , Kinetics , Piperidines , Protein Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
3.
J Immunol ; 193(1): 185-97, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24899507

ABSTRACT

Inhibitors of Bruton's tyrosine kinase (BTK) possess much promise for the treatment of oncologic and autoimmune indications. However, our current knowledge of the role of BTK in immune competence has been gathered in the context of genetic inactivation of btk in both mice and man. Using the novel BTK inhibitor PF-303, we model the clinical phenotype of BTK inhibition by systematically examining the impact of PF-303 on the mature immune system in mice. We implicate BTK in tonic BCR signaling, demonstrate dependence of the T3 B cell subset and IgM surface expression on BTK activity, and find that B1 cells survive and function independently of BTK. Although BTK inhibition does not impact humoral memory survival, Ag-driven clonal expansion of memory B cells and Ab-secreting cell generation are inhibited. These data define the role of BTK in the mature immune system and mechanistically predict the clinical phenotype of chronic BTK inhibition.


Subject(s)
B-Lymphocyte Subsets/immunology , Immunity, Humoral/physiology , Immunologic Memory/physiology , Models, Immunological , Protein-Tyrosine Kinases/immunology , Agammaglobulinaemia Tyrosine Kinase , Animals , Cell Survival/drug effects , Cell Survival/genetics , Cell Survival/immunology , Humans , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Mice , Mice, Inbred CBA , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics
4.
J Immunol ; 191(9): 4540-50, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24068666

ABSTRACT

Autoantibody production and immune complex deposition within the kidney promote renal disease in patients with lupus nephritis. Thus, therapeutics that inhibit these pathways may be efficacious in the treatment of systemic lupus erythematosus. Bruton's tyrosine kinase (BTK) is a critical signaling component of both BCR and FcR signaling. We sought to assess the efficacy of inhibiting BTK in the development of lupus-like disease, and in this article describe (R)-5-amino-1-(1-cyanopiperidin-3-yl)-3-(4-[2,4-difluorophenoxy]phenyl)-1H-pyrazole-4-carboxamide (PF-06250112), a novel highly selective and potent BTK inhibitor. We demonstrate in vitro that PF-06250112 inhibits both BCR-mediated signaling and proliferation, as well as FcR-mediated activation. To assess the therapeutic impact of BTK inhibition, we treated aged NZBxW_F1 mice with PF-06250112 and demonstrate that PF-06250112 significantly limits the spontaneous accumulation of splenic germinal center B cells and plasma cells. Correspondingly, anti-dsDNA and autoantibody levels were reduced in a dose-dependent manner. Moreover, administration of PF-06250112 prevented the development of proteinuria and improved glomerular pathology scores in all treatment groups. Strikingly, this therapeutic effect could occur with only a modest reduction observed in anti-dsDNA titers, implying a critical role for BTK signaling in disease pathogenesis beyond inhibition of autoantibody production. We subsequently demonstrate that PF-06250112 prevents proteinuria in an FcR-dependent, Ab-mediated model of glomerulonephritis. Importantly, these results highlight that BTK inhibition potently limits the development of glomerulonephritis by impacting both cell- and effector molecule-mediated pathways. These data provide support for evaluating the efficacy of BTK inhibition in systemic lupus erythematosus patients.


Subject(s)
B-Lymphocytes/immunology , Glomerulonephritis/immunology , Lupus Erythematosus, Systemic/immunology , Piperidines/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/therapeutic use , Agammaglobulinaemia Tyrosine Kinase , Animals , B-Lymphocytes/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Female , Germinal Center/cytology , Glomerulonephritis/metabolism , Glomerulonephritis/prevention & control , Kidney/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/prevention & control , Lymphocyte Activation/drug effects , Mice , Mice, Inbred NZB , Piperidines/pharmacology , Plasma Cells/drug effects , Plasma Cells/immunology , Protein-Tyrosine Kinases/metabolism , Pyrazoles/pharmacology , Receptors, Fc , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
5.
Eur J Immunol ; 42(6): 1393-404, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22678896

ABSTRACT

The glucocorticoid-induced TNFR-related (GITR) protein is a coactivating receptor that is constitutively expressed on Treg cells and induced on activated T cells. To better under-stand the role of long-term GITR signaling, we generated a mouse that constitutively expresses GITR ligand (GITRL) on APCs that mimics the physiological distribution of GITRL in vivo. Despite a five-fold expansion of the Treg-cell pool, there is increased activation and depletion of naive T cells in the transgenic (Tg) mice, suggesting that the increased number of Treg cells cannot fully suppress T-cell activation. Interestingly, GITRL Tg mice have multiorgan lymphocytic infiltrates yet display no overt autoimmunity, indicating the existence of a compensatory immunoregulatory mechanism(s). In the spleens and tissue infiltrates ofGITRL Tg mice, we found increased numbers of Foxp3(-) IL-10-producing type 1 regulatory T (Tr-1)-like cells that suppress naïve T-cell proliferation in an IL-10-dependent fashion. Increased IL-27 production from Tg APCs and activation of c-Maf in the Tr1-like cells suggest a possible mechanism for their induction. Our results demonstrate that enhanced GITR/GITRL interactions have a pleiotropic role on the regulation of T-cell responses, which includes promoting the differentiation of Tr-1-like cells, which contribute to the maintenance of peripheral T-cell tolerance.


Subject(s)
Glucocorticoid-Induced TNFR-Related Protein/physiology , Interleukin-10/biosynthesis , Interleukins/biosynthesis , T-Lymphocytes, Regulatory/physiology , Tumor Necrosis Factors/physiology , Animals , Autoimmunity , Forkhead Transcription Factors/analysis , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic
6.
Bioorg Med Chem Lett ; 21(21): 6258-63, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21958547

ABSTRACT

Imidazo[1,5-a]quinoxalines were synthesized that function as irreversible Bruton's tyrosine kinase (BTK) inhibitors. The syntheses and SAR of this series of compounds are presented as well as the X-ray crystal structure of the lead compound 36 in complex with a gate-keeper variant of ITK enzyme. The lead compound showed good in vivo efficacy in preclinical RA models.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinoxalines/pharmacology , Agammaglobulinaemia Tyrosine Kinase , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Quinoxalines/chemistry
7.
Assay Drug Dev Technol ; 5(6): 751-8, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18181691

ABSTRACT

Bruton's tyrosine kinase (Btk) and interleukin-2-inducible T cell kinase (Itk) are members of the TEC family of nonreceptor tyrosine kinases and are expressed primarily in B and T cells, respectively. Both kinases are critically involved in lymphocyte development and signal transduction. In particular, Btk and Itk regulate calcium mobilization subsequent to antigen receptor stimulation. Small molecule antagonists that specifically inhibit either Btk or Itk may allow for selective modulation of B cell or T cell activity and may be useful in treating inflammatory and autoimmune conditions. We have developed a medium-throughput fluorescent imaging plate reader (FLIPR)- based calcium flux assay that can be used to assay potential Btk and Itk inhibitors. This assay takes advantage of Btk-deficient DT40 (DT40-Btk-/-) chicken B cells, which are unable to mobilize calcium in response to cross-linking of their B cell receptor (BCR). Ectopic expression of TEC family kinases can restore antigen receptor signaling in these cells. We have generated stable DT40-Btk-/- lines expressing either wild-type human Btk (huBtk) or a chimeric Btk-Itk kinase (huBtk-Itk) molecule-a Btk protein whose kinase domain has been replaced by the kinase domain of Itk. Expression of either huBtk or huBtk-Itk in DT40-Btk-/- cells restores calcium flux in response to BCR engagement. Using Btk- and Itk-selective inhibitors, we show that inhibition of calcium responses in huBtk-Itk-DT40-Btk-/- cells and huBtk-DT40-Btk-/- cells is dependent on the Itk or Btk kinase domain, respectively. Thus, the FLIPR assay described here can be used to assess, compare, and rank the potency and selectivity of inhibitors of Itk and Btk kinases.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Animals , B-Lymphocytes/enzymology , Calcium/metabolism , Chickens , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Data Interpretation, Statistical , Drug Evaluation, Preclinical/instrumentation , Fluorescent Dyes , Fluorometry , Freeze Drying , Genetic Vectors/genetics , Immunoblotting , Lasers , Organisms, Genetically Modified , Promoter Regions, Genetic/genetics , Protein Engineering , Protein-Tyrosine Kinases/genetics
8.
Neurosci Lett ; 332(3): 185-9, 2002 Nov 08.
Article in English | MEDLINE | ID: mdl-12399011

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system (CNS) that can be induced in susceptible mice by the transfer of autoreactive T cells that recognize myelin basic protein (MBP). The onset and subsequent recovery from disease are associated with distinct patterns of cytokine and chemokine expression within the inflammatory lesions of the CNS. Given the likely importance of the local cytokine milieu in regulating the disease process, it would be preferable to administer cytokines locally to the CNS and reduce systemic delivery in order to evaluate their immunoregulatory roles in EAE. For this purpose, we have used retrovirally transduced T cells from MBP-specific T cell receptor transgenic mice in an attempt to target cytokine delivery to the CNS where MBP is primarily expressed. We have found that T cells expressing granulocyte macrophage colony-stimulating factor (GM-CSF) induce severe, chronic EAE from which mice fail to recover. Our results indicate that increased local GM-CSF expression could play an important role in inducing chronic EAE.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Retroviridae/genetics , T-Lymphocytes/physiology , Animals , Antigens/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Mice , Mice, Transgenic , Myelin Basic Protein/immunology , Myelin Basic Protein/physiology , RNA, Messenger/biosynthesis , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL