Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gynecol Oncol ; 185: 83-94, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38377762

ABSTRACT

OBJECTIVE: Advanced-stage high-grade serous ovarian cancer (HGSOC) remains a deadly gynecologic malignancy with high rates of disease recurrence and limited, effective therapeutic options for patients. There is a significant need to better stratify HGSOC patients into platinum refractory (PRF) vs. sensitive (PS) cohorts at baseline to improve therapeutic responses and survival outcomes for PRF HGSOC. METHODS: We performed NanoString for GeoMx Digital Spatial Profile (G-DSP) multiplex protein analysis on PRF and PS tissue microarrays (TMAs) to study the bidirectional communication of cancer cells with immune cells in the tumor microenvironment (TME) of HGSOC. We demonstrate robust stratification of PRF and PS tumors at baseline using multiplex spatial proteomic biomarkers with implications for tailoring subsequent therapy. RESULTS: PS patients had elevated apoptotic and anti-tumor immune profiles, while PRF patients had dual AKT1 and WNT signaling with immunosuppressive profiles. We found that dual activity of AKT1 and WNT signaling supported the exclusion of immune cells, specifically tumor infiltrating lymphocytes (TILs), from the TME in PRF tumors, and this was not observed in PS tumors. The exclusion of immune cells from the TME of PRF tumors corresponded to abnormal endothelial cell structure in tumors with dual AKT1 and WNT signaling activity. CONCLUSIONS: We believe our findings provide improved understanding of tumor-immune crosstalk in HGSOC TME highlighting the importance of the relationship between AKT and WNT pathways, immune cell function, and platinum response in HGSOC.


Subject(s)
Drug Resistance, Neoplasm , Ovarian Neoplasms , Proteomics , Proto-Oncogene Proteins c-akt , Tumor Microenvironment , Humans , Female , Tumor Microenvironment/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Proteomics/methods , Drug Resistance, Neoplasm/immunology , Middle Aged , Cystadenocarcinoma, Serous/immunology , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/metabolism , Wnt Signaling Pathway/immunology , Aged , Lymphocytes, Tumor-Infiltrating/immunology
2.
Cancer Cell ; 41(9): 1586-1605.e15, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37567170

ABSTRACT

We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of ß-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. Overall, this study identified molecular and imaging markers that can be further investigated to guide patient stratification for more precise treatment of EC.


Subject(s)
Endometrial Neoplasms , Metformin , Proteogenomics , Female , Humans , Proto-Oncogene Proteins c-akt/genetics , Prospective Studies , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Metformin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...