Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Cancer Cell ; 42(9): 1614-1629.e5, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39214094

ABSTRACT

KRAS mutations in pancreatic ductal adenocarcinoma (PDAC) are suggested to vary in oncogenicity but the implications for human patients have not been explored in depth. We examined 1,360 consecutive PDAC patients undergoing surgical resection and find that KRASG12R mutations are enriched in early-stage (stage I) disease, owing not to smaller tumor size but increased node-negativity. KRASG12R tumors are associated with decreased distant recurrence and improved survival as compared to KRASG12D. To understand the biological underpinnings, we performed spatial profiling of 20 patients and bulk RNA-sequencing of 100 tumors, finding enhanced oncogenic signaling and epithelial-mesenchymal transition (EMT) in KRASG12D and increased nuclear factor κB (NF-κB) signaling in KRASG12R tumors. Orthogonal studies of mouse KrasG12R PDAC organoids show decreased migration and improved survival in orthotopic models. KRAS alterations in PDAC are thus associated with distinct presentation, clinical outcomes, and biological behavior, highlighting the prognostic value of mutational analysis and the importance of articulating mutation-specific PDAC biology.


Subject(s)
Carcinoma, Pancreatic Ductal , Mutation , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Animals , Mice , Epithelial-Mesenchymal Transition/genetics , Prognosis , Male , Female , NF-kappa B/metabolism , NF-kappa B/genetics , Signal Transduction/genetics , Middle Aged , Organoids/pathology , Cell Movement/genetics , Aged
2.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091857

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest class of membrane-bound receptors and transmit critical signals from the extracellular to the intracellular spaces. Transcriptomic data of resected breast tumors shows that low mRNA expression of the orphan GPCR GPR52 correlates with reduced overall survival in breast cancer patients, leading to the hypothesis that loss of GPR52 supports breast cancer progression. CRISPR-Cas9 was used to knockout GPR52 in human triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, and in the non-cancerous breast epithelial cell line, MCF10A. Loss of GPR52 was found to be associated with increased cell-cell interaction in 2D cultures, altered 3D spheroid morphology, and increased propensity to organize and invade collectively in Matrigel. Furthermore, GPR52 loss was associated with features of EMT in MDA-MB-468 cells. To determine the in vivo impact of GPR52 loss, MDA-MB-468 cells were injected into zebrafish and loss of GPR52 was associated with a greater total cancer area compared to control cells. RNA-sequencing and proteomic analyses of GPR52-null breast cancer cells reveal an increased cAMP signaling signature. Consistently, we found that treatment of wild-type (WT) cells with forskolin, which stimulates production of cAMP, induces some phenotypic changes associated with GPR52 loss, and inhibition of cAMP production rescued some of the GPR52 KO phenotypes. Overall, our results reveal GPR52 loss as a potential mechanism by which breast cancer progression may occur and support the investigation of GPR52 agonism as a therapeutic option in breast cancer.

3.
Cancer Res ; 84(18): 2968-2984, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39037766

ABSTRACT

Perturbation of cell polarity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) progression. Scribble (SCRIB) is a well-characterized polarity regulator that has diverse roles in the pathogenesis of human neoplasms. To investigate the impact of SCRIB deficiency in PDAC development and progression, Scrib expression was genetically ablated in well-established mouse models of PDAC. Scrib loss in combination with KrasG12D did not influence development of pancreatic intraepithelial neoplasms in mice. However, Scrib deletion cooperated with KrasG12D and concomitant Trp53 heterozygous deletion to promote invasive PDAC and metastatic dissemination, leading to reduced overall survival. Immunohistochemical and transcriptome analyses revealed that Scrib-null tumors display a pronounced reduction of collagen content and an abundance of cancer-associated fibroblasts (CAF). Mechanistically, IL1α levels were reduced in Scrib-deficient tumors, and Scrib knockdown downregulated IL1α in mouse PDAC organoids (mPDO), which impaired CAF activation. Furthermore, Scrib loss increased YAP activation in mPDOs and established PDAC cell lines, enhancing cell survival. Clinically, SCRIB expression was decreased in human PDAC, and SCRIB mislocalization was associated with poorer patient outcome. These results indicate that SCRIB deficiency enhances cancer cell survival and remodels the tumor microenvironment to accelerate PDAC development and progression, establishing the tumor suppressor function of SCRIB in advanced pancreatic cancer. Significance: SCRIB loss promotes invasive pancreatic cancer development via both cell-autonomous and non-cell-autonomous processes and is associated with poorer outcomes, denoting SCRIB as a tumor suppressor and potential biomarker for the prediction of recurrence.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Tumor Suppressor Proteins , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Mice , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Membrane Proteins/genetics , Membrane Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Interleukin-1alpha/metabolism , Interleukin-1alpha/genetics , Organoids/metabolism , Organoids/pathology , Mice, Knockout , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/deficiency
4.
Cancer Res ; 84(6): 798-799, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38335538

ABSTRACT

Understanding patient-specific responses to anticancer therapies and how individual tumors interact with their tumor microenvironment (TME) is a challenging task. To measure the impact of the TME on diverse and clinically relevant treatments, Ramos Zapatero and colleagues coupled patient-derived organoid (PDO) and cancer-associated fibroblast (CAF) cocultures with high-throughput mass cytometry-based assessment of cell state. Using a newly developed "Trellis" algorithm enabled integration and analysis of highly complex, multidimensional treatment response data. This work showed that tumor cell response to chemotherapy was associated with both intrinsic and nonintrinsic signaling states, whereby proliferative rate, growth factor signaling, and CAFs interaction influenced chemoprotection. Furthermore, the work suggests a potential role for the TME in promoting lineage plasticity associated with drug resistance. In all, the pipeline described provides a blueprint for exploring the intricate interplay of factors influencing cancer treatment response.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Algorithms , Coculture Techniques , Organoids , Signal Transduction , Tumor Microenvironment , Neoplasms/drug therapy
5.
Am J Pathol ; 194(6): 927-940, 2024 06.
Article in English | MEDLINE | ID: mdl-38417696

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that are largely driven by immune cell activity, and mucosal healing is critical for remission. Serine is a nonessential amino acid that supports epithelial and immune cell metabolism and proliferation; however, whether these roles affect IBD pathogenesis is not well understood. Herein, the study showed that serine synthesis increased selectively in the epithelial cells of colons from patients with IBD and murine models of colitis. Inhibiting serine synthesis impaired colonic mucosal healing and increased susceptibility to acute injury in mice, effects associated with diminished epithelial cell proliferation. Dietary removal of serine similarly sensitized mice to acute chemically induced colitis but ameliorated inflammation in chronic colitis models. The anti-inflammatory effect of exogenous serine depletion in chronic colitis was associated with mitochondrial dysfunction of macrophages, resulting in impaired nucleotide production and proliferation. Collectively, these results suggest that serine plays an important role in both epithelial and immune cell biology in the colon and that modulating its availability could impact IBD pathogenesis.


Subject(s)
Cell Proliferation , Colitis , Epithelial Cells , Intestinal Mucosa , Serine , Animals , Colitis/immunology , Colitis/pathology , Colitis/chemically induced , Mice , Humans , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Serine/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Female , Colon/pathology , Colon/immunology , Colon/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Disease Models, Animal
6.
Cancer Discov ; 14(2): 308-325, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37931288

ABSTRACT

Lung adenocarcinoma (LUAD), commonly driven by KRAS mutations, is responsible for 7% of all cancer mortality. The first allele-specific KRAS inhibitors were recently approved in LUAD, but the clinical benefit is limited by intrinsic and acquired resistance. LUAD predominantly arises from alveolar type 2 (AT2) cells, which function as facultative alveolar stem cells by self-renewing and replacing alveolar type 1 (AT1) cells. Using genetically engineered mouse models, patient-derived xenografts, and patient samples, we found inhibition of KRAS promotes transition to a quiescent AT1-like cancer cell state in LUAD tumors. Similarly, suppressing Kras induced AT1 differentiation of wild-type AT2 cells upon lung injury. The AT1-like LUAD cells exhibited high growth and differentiation potential upon treatment cessation, whereas ablation of the AT1-like cells robustly improved treatment response to KRAS inhibitors. Our results uncover an unexpected role for KRAS in promoting intratumoral heterogeneity and suggest that targeting alveolar differentiation may augment KRAS-targeted therapies in LUAD. SIGNIFICANCE: Treatment resistance limits response to KRAS inhibitors in LUAD patients. We find LUAD residual disease following KRAS targeting is composed of AT1-like cancer cells with the capacity to reignite tumorigenesis. Targeting the AT1-like cells augments responses to KRAS inhibition, elucidating a therapeutic strategy to overcome resistance to KRAS-targeted therapy. This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mice , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Differentiation , Alveolar Epithelial Cells/pathology
7.
Nat Biotechnol ; 42(3): 437-447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37563300

ABSTRACT

Although single-nucleotide variants (SNVs) make up the majority of cancer-associated genetic changes and have been comprehensively catalogued, little is known about their impact on tumor initiation and progression. To enable the functional interrogation of cancer-associated SNVs, we developed a mouse system for temporal and regulatable in vivo base editing. The inducible base editing (iBE) mouse carries a single expression-optimized cytosine base editor transgene under the control of a tetracycline response element and enables robust, doxycycline-dependent expression across a broad range of tissues in vivo. Combined with plasmid-based or synthetic guide RNAs, iBE drives efficient engineering of individual or multiple SNVs in intestinal, lung and pancreatic organoids. Temporal regulation of base editor activity allows controlled sequential genome editing ex vivo and in vivo, and delivery of sgRNAs directly to target tissues facilitates generation of in situ preclinical cancer models.


Subject(s)
Gene Editing , Neoplasms , Mice , Animals , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Neoplasms/genetics , Neoplasms/therapy , Lung
8.
bioRxiv ; 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37808711

ABSTRACT

Lung adenocarcinoma (LUAD), commonly driven by KRAS mutations, is responsible for 7% of all cancer mortality. The first allele-specific KRAS inhibitors were recently approved in LUAD, but clinical benefit is limited by intrinsic and acquired resistance. LUAD predominantly arises from alveolar type 2 (AT2) cells, which function as facultative alveolar stem cells by self-renewing and replacing alveolar type 1 (AT1) cells. Using genetically engineered mouse models, patient-derived xenografts, and patient samples we found inhibition of KRAS promotes transition to a quiescent AT1-like cancer cell state in LUAD tumors. Similarly, suppressing Kras induced AT1 differentiation of wild-type AT2 cells upon lung injury. The AT1-like LUAD cells exhibited high growth and differentiation potential upon treatment cessation, whereas ablation of the AT1-like cells robustly improved treatment response to KRAS inhibitors. Our results uncover an unexpected role for KRAS in promoting intra-tumoral heterogeneity and suggest targeting alveolar differentiation may augment KRAS-targeted therapies in LUAD. Significance: Treatment resistance limits response to KRAS inhibitors in LUAD patients. We find LUAD residual disease following KRAS targeting is composed of AT1-like cancer cells with the capacity to reignite tumorigenesis. Targeting the AT1-like cells augments responses to KRAS inhibition, elucidating a therapeutic strategy to overcome resistance to KRAS-targeted therapy.

9.
Nat Commun ; 14(1): 6422, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828026

ABSTRACT

Tumors acquire alterations in oncogenes and tumor suppressor genes in an adaptive walk through the fitness landscape of tumorigenesis. However, the interactions between oncogenes and tumor suppressor genes that shape this landscape remain poorly resolved and cannot be revealed by human cancer genomics alone. Here, we use a multiplexed, autochthonous mouse platform to model and quantify the initiation and growth of more than one hundred genotypes of lung tumors across four oncogenic contexts: KRAS G12D, KRAS G12C, BRAF V600E, and EGFR L858R. We show that the fitness landscape is rugged-the effect of tumor suppressor inactivation often switches between beneficial and deleterious depending on the oncogenic context-and shows no evidence of diminishing-returns epistasis within variants of the same oncogene. These findings argue against a simple linear signaling relationship amongst these three oncogenes and imply a critical role for off-axis signaling in determining the fitness effects of inactivating tumor suppressors.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Mice , Humans , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Oncogenes/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Mutation
10.
Article in English | MEDLINE | ID: mdl-37487630

ABSTRACT

Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.

11.
Sci Rep ; 13(1): 8246, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217526

ABSTRACT

Genetically engineered mouse models (GEMMs) are important immunocompetent models for research into the roles of individual genes in cancer and the development of novel therapies. Here we use inducible CRISPR-Cas9 systems to develop two GEMMs which aim to model the extensive chromosome p3 deletion frequently observed in clear cell renal cell carcinoma (ccRCC). We cloned paired guide RNAs targeting early exons of Bap1, Pbrm1, and Setd2 in a construct containing a Cas9D10A (nickase, hSpCsn1n) driven by tetracycline (tet)-responsive elements (TRE3G) to develop our first GEMM. The founder mouse was crossed with two previously established transgenic lines, one carrying the tet-transactivator (tTA, Tet-Off) and one with a triple-mutant stabilized HIF1A-M3 (TRAnsgenic Cancer of the Kidney, TRACK), both driven by a truncated, proximal tubule-specific γ-glutamyltransferase 1 (ggt or γGT) promoter, to create triple-transgenic animals. Our results indicate that this model (BPS-TA) induces low numbers of somatic mutations in Bap1 and Pbrm1 (but not in Setd2), known tumor suppressor genes in human ccRCC. These mutations, largely restricted to kidneys and testis, induced no detectable tissue transformation in a cohort of 13 month old mice (N = 10). To gain insights into the low frequencies of insertions and deletions (indels) in BPS-TA mice we analyzed wild type (WT, N = 7) and BPS-TA (N = 4) kidneys by RNAseq. This showed activation of both DNA damage and immune response, suggesting activation of tumor suppressive mechanisms in response to genome editing. We then modified our approach by generating a second model in which a ggt-driven, cre-regulated Cas9WT(hSpCsn1) was employed to introduce Bap1, Pbrm1, and Setd2 genome edits in the TRACK line (BPS-Cre). The BPS-TA and BPS-Cre lines are both tightly controlled in a spatiotemporal manner with doxycycline (dox) and tamoxifen (tam), respectively. In addition, whereas the BPS-TA line relies on paired guide RNAs (gRNAs), the BPS-Cre line requires only single gRNAs for gene perturbation. In the BPS-Cre we identified increased Pbrm1 gene-editing frequencies compared to the BPS-TA model. Whereas we did not detect Setd2 edits in the BPS-TA kidneys, we found extensive editing of Setd2 in the BPS-Cre model. Bap1 editing efficiencies were comparable between the two models. Although no gross malignancies were observed in our study, this is the first reported GEMM which models the extensive chromosome 3p deletion frequently observed in kidney cancer patients. Further studies are required (1) to model more extensive 3p deletions, e.g. impacting additional genes, and (2) to increase the cellular resolution, e.g. by employing single-cell RNAseq to ascertain the effects of specific combinatorial gene inactivation.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Male , Humans , Mice , Animals , Infant , Carcinoma, Renal Cell/pathology , Tumor Suppressor Proteins/genetics , Kidney Neoplasms/pathology , Mutation , Promoter Regions, Genetic
12.
Sci Transl Med ; 15(684): eade1857, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812344

ABSTRACT

Obesity, defined as a body mass index (BMI) ≥ 30, is an established risk factor for breast cancer among women in the general population after menopause. Whether elevated BMI is a risk factor for women with a germline mutation in BRCA1 or BRCA2 is less clear because of inconsistent findings from epidemiological studies and a lack of mechanistic studies in this population. Here, we show that DNA damage in normal breast epithelia of women carrying a BRCA mutation is positively correlated with BMI and with biomarkers of metabolic dysfunction. In addition, RNA sequencing showed obesity-associated alterations to the breast adipose microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, which affected neighboring breast epithelial cells. In breast tissue explants cultured from women carrying a BRCA mutation, we found that blockade of estrogen biosynthesis or estrogen receptor activity decreased DNA damage. Additional obesity-associated factors, including leptin and insulin, increased DNA damage in human BRCA heterozygous epithelial cells, and inhibiting the signaling of these factors with a leptin-neutralizing antibody or PI3K inhibitor, respectively, decreased DNA damage. Furthermore, we show that increased adiposity was associated with mammary gland DNA damage and increased penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic evidence in support of a link between elevated BMI and breast cancer development in BRCA mutation carriers. This suggests that maintaining a lower body weight or pharmacologically targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this population.


Subject(s)
Breast Neoplasms , Mammary Glands, Human , Female , Humans , Animals , Mice , Germ-Line Mutation , Leptin , Mammary Glands, Human/pathology , Phosphatidylinositol 3-Kinases , BRCA2 Protein , BRCA1 Protein/genetics , Breast Neoplasms/pathology , DNA Damage , Epithelium/pathology , Obesity , Estrogens , Mutation , Tumor Microenvironment
13.
bioRxiv ; 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38234855

ABSTRACT

Control of cell identity and number is central to tissue function, yet principles governing organization of malignant cells in tumor tissues remain poorly understood. Using mathematical modeling and candidate-based analysis, we discover primary and metastatic pancreatic ductal adenocarcinoma (PDAC) organize in a stereotypic pattern whereby PDAC cells responding to WNT signals (WNT-R) neighbor WNT-secreting cancer cells (WNT-S). Leveraging lineage-tracing, we reveal the WNT-R state is transient and gives rise to the WNT-S state that is highly stable and committed to organizing malignant tissue. We further show that a subset of WNT-S cells expressing the Notch ligand DLL1 form a functional niche for WNT-R cells. Genetic inactivation of WNT secretion or Notch pathway components, or cytoablation of the WNT-S state disrupts PDAC tissue organization, suppressing tumor growth and metastasis. This work indicates PDAC growth depends on an intricately controlled equilibrium of functionally distinct cancer cell states, uncovering a fundamental principle governing solid tumor growth and revealing new opportunities for therapeutic intervention.

14.
BMC Genomics ; 23(1): 792, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457077

ABSTRACT

Somatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Mice , Cell Survival/genetics , Colorectal Neoplasms/genetics , Genotype , MicroRNAs/genetics , Organoids
15.
Cell Rep Methods ; 2(7): 100239, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35880017

ABSTRACT

We present Multi-miR, a microRNA-embedded shRNA system modeled after endogenous microRNA clusters that enables simultaneous expression of up to three or four short hairpin RNAs (shRNAs) from a single promoter without loss of activity, enabling robust combinatorial RNA interference (RNAi). We further developed complementary all-in-one vectors that are over one log-scale more sensitive to doxycycline-mediated activation in vitro than previous methods and resistant to shRNA inactivation in vivo. We demonstrate the utility of this system for intracranial expression of shRNAs in a glioblastoma model. Additionally, we leverage this platform to target the redundant RAF signaling node in a mouse model of KRAS-mutant cancer and show that robust combinatorial synthetic lethality efficiently abolishes tumor growth.


Subject(s)
MicroRNAs , Mice , Animals , MicroRNAs/genetics , RNA Interference , Genetic Vectors , RNA, Small Interfering/genetics , Promoter Regions, Genetic
16.
Science ; 376(6596): eabe1505, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35617398

ABSTRACT

In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids, six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype, and a stem cell-like (SCL) subtype driven by activator protein-1 (AP-1) transcription factors. We used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes in this group. Together, this molecular classification reveals drug targets and can potentially guide therapeutic decisions.


Subject(s)
Chromatin , Molecular Targeted Therapy , Prostatic Neoplasms, Castration-Resistant , Cell Line, Tumor , Chromatin/genetics , Gene Expression Profiling , Humans , Male , Neoplastic Stem Cells/classification , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Organoids/pathology , Prostatic Neoplasms, Castration-Resistant/classification , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
17.
Proc Natl Acad Sci U S A ; 119(17): e2110557119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35442775

ABSTRACT

Anticancer drug development campaigns often fail due to an incomplete understanding of the therapeutic index differentiating the efficacy of the agent against the cancer and its on-target toxicities to the host. To address this issue, we established a versatile preclinical platform in which genetically defined cancers are produced using somatic tissue engineering in transgenic mice harboring a doxycycline-inducible short hairpin RNA against the target of interest. In this system, target inhibition is achieved by the addition of doxycycline, enabling simultaneous assessment of efficacy and toxicity in the same animal. As proof of concept, we focused on CDK9­a cancer target whose clinical development has been hampered by compounds with poorly understood target specificity and unacceptable toxicities. We systematically compared phenotypes produced by genetic Cdk9 inhibition to those achieved using a recently developed highly specific small molecule CDK9 inhibitor and found that both perturbations led to robust antitumor responses. Remarkably, nontoxic levels of CDK9 inhibition could achieve significant treatment efficacy, and dose-dependent toxicities produced by prolonged CDK9 suppression were largely reversible upon Cdk9 restoration or drug withdrawal. Overall, these results establish a versatile in vivo target validation platform that can be employed for rapid triaging of therapeutic targets and lend support to efforts aimed at advancing CDK9 inhibitors for cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cyclin-Dependent Kinase 9/metabolism , Mice , Neoplasms/drug therapy , Neoplasms/genetics , RNA Interference
18.
Nat Biotechnol ; 40(6): 862-873, 2022 06.
Article in English | MEDLINE | ID: mdl-35165384

ABSTRACT

Base editing can be applied to characterize single nucleotide variants of unknown function, yet defining effective combinations of single guide RNAs (sgRNAs) and base editors remains challenging. Here, we describe modular base-editing-activity 'sensors' that link sgRNAs and cognate target sites in cis and use them to systematically measure the editing efficiency and precision of thousands of sgRNAs paired with functionally distinct base editors. By quantifying sensor editing across >200,000 editor-sgRNA combinations, we provide a comprehensive resource of sgRNAs for introducing and interrogating cancer-associated single nucleotide variants in multiple model systems. We demonstrate that sensor-validated tools streamline production of in vivo cancer models and that integrating sensor modules in pooled sgRNA libraries can aid interpretation of high-throughput base editing screens. Using this approach, we identify several previously uncharacterized mutant TP53 alleles as drivers of cancer cell proliferation and in vivo tumor development. We anticipate that the framework described here will facilitate the functional interrogation of cancer variants in cell and animal models.


Subject(s)
Gene Editing , Neoplasms , Animals , CRISPR-Cas Systems/genetics , Neoplasms/genetics , Nucleotides , RNA, Guide, Kinetoplastida/genetics
19.
Nat Rev Cancer ; 22(5): 259-279, 2022 05.
Article in English | MEDLINE | ID: mdl-35194172

ABSTRACT

Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms , Biology , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , Genome , Humans , Neoplasms/genetics , Neoplasms/therapy
20.
PLoS Genet ; 17(12): e1009941, 2021 12.
Article in English | MEDLINE | ID: mdl-34879057

ABSTRACT

The retinoblastoma (RB) tumor suppressor is functionally inactivated in a wide range of human tumors where this inactivation promotes tumorigenesis in part by allowing uncontrolled proliferation. RB has been extensively studied, but its mechanisms of action in normal and cancer cells remain only partly understood. Here, we describe a new mouse model to investigate the consequences of RB depletion and its re-activation in vivo. In these mice, induction of shRNA molecules targeting RB for knock-down results in the development of phenotypes similar to Rb knock-out mice, including the development of pituitary and thyroid tumors. Re-expression of RB leads to cell cycle arrest in cancer cells and repression of transcriptional programs driven by E2F activity. Thus, continuous RB loss is required for the maintenance of tumor phenotypes initiated by loss of RB, and this new mouse model will provide a new platform to investigate RB function in vivo.


Subject(s)
Pituitary Neoplasms/genetics , Retinoblastoma Binding Proteins/genetics , Thyroid Neoplasms/genetics , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Disease Models, Animal , E2F Transcription Factors/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Transgenic , NIH 3T3 Cells , Pituitary Neoplasms/pathology , RNA, Small Interfering/metabolism , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL