Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 189(4): 1473-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17012393

ABSTRACT

Comparisons of the 1.84-Mb genome of serotype M5 Streptococcus pyogenes strain Manfredo with previously sequenced genomes emphasized the role of prophages in diversification of S. pyogenes and the close relationship between strain Manfredo and MGAS8232, another acute rheumatic fever-associated strain.


Subject(s)
Genome, Bacterial , Rheumatic Fever/microbiology , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial/physiology , Genetic Variation , Molecular Sequence Data , Phylogeny
2.
Nat Genet ; 38(7): 779-86, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16804543

ABSTRACT

We determined the complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain. Our analysis indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons. These mobile elements are putatively responsible for the acquisition by C. difficile of an extensive array of genes involved in antimicrobial resistance, virulence, host interaction and the production of surface structures. The metabolic capabilities encoded in the genome show multiple adaptations for survival and growth within the gut environment. The extreme genome variability was confirmed by whole-genome microarray analysis; it may reflect the organism's niche in the gut and should provide information on the evolution of virulence in this organism.


Subject(s)
Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Adaptation, Physiological , Bacterial Proteins/genetics , Base Sequence , Clostridioides difficile/drug effects , Clostridioides difficile/physiology , Conjugation, Genetic , DNA Transposable Elements/genetics , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Enterocolitis, Pseudomembranous/etiology , Enterocolitis, Pseudomembranous/microbiology , Gastrointestinal Tract/microbiology , Genome, Bacterial , Humans , Molecular Sequence Data , Mosaicism , Oligonucleotide Array Sequence Analysis , Spores, Bacterial/physiology , Virulence/genetics
3.
Proc Natl Acad Sci U S A ; 101(26): 9786-91, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15213324

ABSTRACT

Staphylococcus aureus is an important nosocomial and community-acquired pathogen. Its genetic plasticity has facilitated the evolution of many virulent and drug-resistant strains, presenting a major and constantly changing clinical challenge. We sequenced the approximately 2.8-Mbp genomes of two disease-causing S. aureus strains isolated from distinct clinical settings: a recent hospital-acquired representative of the epidemic methicillin-resistant S. aureus EMRSA-16 clone (MRSA252), a clinically important and globally prevalent lineage; and a representative of an invasive community-acquired methicillin-susceptible S. aureus clone (MSSA476). A comparative-genomics approach was used to explore the mechanisms of evolution of clinically important S. aureus genomes and to identify regions affecting virulence and drug resistance. The genome sequences of MRSA252 and MSSA476 have a well conserved core region but differ markedly in their accessory genetic elements. MRSA252 is the most genetically diverse S. aureus strain sequenced to date: approximately 6% of the genome is novel compared with other published genomes, and it contains several unique genetic elements. MSSA476 is methicillin-susceptible, but it contains a novel Staphylococcal chromosomal cassette (SCC) mec-like element (designated SCC(476)), which is integrated at the same site on the chromosome as SCCmec elements in MRSA strains but encodes a putative fusidic acid resistance protein. The crucial role that accessory elements play in the rapid evolution of S. aureus is clearly illustrated by comparing the MSSA476 genome with that of an extremely closely related MRSA community-acquired strain; the differential distribution of large mobile elements carrying virulence and drug-resistance determinants may be responsible for the clinically important phenotypic differences in these strains.


Subject(s)
Drug Resistance, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Drug Resistance, Bacterial/drug effects , Genes, Bacterial/genetics , Genetic Variation , Genomics , Humans , Phylogeny , Sequence Analysis, DNA , Staphylococcus aureus/classification , Staphylococcus aureus/drug effects , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...