Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol ; 126(1): 244-52, 2001 May.
Article in English | MEDLINE | ID: mdl-11351087

ABSTRACT

Expansin proteins are essential components of acid-induced cell wall loosening in plants. Beta-expansins, which constitute a subfamily of related expansin proteins, include the group I grass pollen allergens. To provide a better description of beta-expansin expression, we have characterized a cytokinin-inducible beta-expansin from soybean (Glycine max cv Mandarin) called Cim1. Our results demonstrate that the hormones cytokinin and auxin act synergistically to induce the accumulation and proteolytic processing of Cim1. Carboxyl terminal truncation of a 35-kD form of Cim1 is predicted to remove the putative cellulose binding domain from the amino terminal cysteine-rich domain, resulting in a 20-kD form of the protein. Furthermore, the identical amino termini of the 35- and 20-kD forms of Cim1 correspond to a position 11 amino acids downstream of the predicted signal sequence cleavage site, suggesting proteolysis of a short amino terminal propeptide after removal of the signal peptide. This propeptide fragment contains a consensus site for N-glycosylation and our data suggest that it is glycosylated by a tunicamycin-sensitive mechanism in cultured soybean cells. The onset of Cim1 expression correlates with increased growth of soybean cultures. Ultimately, Cim1 is rapidly and specifically proteolyzed as soybean cultures reach stationary phase. These findings are consistent with the hypothesis that beta-expansin proteins are extensively modified by post-translational N-glycosylation and proteolysis.


Subject(s)
Cytokinins/physiology , Gene Expression Regulation, Plant/physiology , Glycine max/genetics , Indoleacetic Acids/physiology , Plant Proteins/genetics , Soybean Proteins , Amino Acid Sequence , Glycosylation , Hydrolysis , Molecular Sequence Data , Mutation , Plant Proteins/chemistry
2.
Plant Mol Biol ; 37(3): 437-44, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9617811

ABSTRACT

The cytokinin-inducible soybean mRNA Cim1 accumulates 20-60-fold upon cytokinin addition to cytokinin-starved soybean suspension cultures. In this report, we demonstrate that cytokinin-induced stability of the Cim1 mRNA plays an important role in the accumulation of the message. We also present evidence that cytokinin-induced Cim1 stability is blocked by the addition of the protein phosphatase inhibitor okadaic acid. Thus, we suggest that protein phosphatase activity is required for the cytokinin-induced stability and subsequent accumulation of Cim1 in soybean cells. The deduced amino acid sequence of the Cim1 protein product is similar to the group I pollen allergens from various plants, which constitute a subfamily of expansin proteins. The relatedness between Cim1 and the expansins supports our hypothesis that the protein product of Cim1 is localized to the cell wall and suggests a role for Cim1 in cytokinin-regulated cell wall expansion. Thus, post-transcriptional regulation of Cim1 by cytokinin may represent a molecular link between cytokinin and changes in cell shape and size.


Subject(s)
Cytokinins/physiology , Gene Expression Regulation, Plant/physiology , Glycine max/genetics , Plant Proteins/genetics , RNA Processing, Post-Transcriptional , Soybean Proteins , Phosphorylation , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL