Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Wound Repair Regen ; 2024 Mar 17.
Article En | MEDLINE | ID: mdl-38494793

Diabetic foot ulcers are a common and severe complication of diabetes mellitus, and a risk factor for amputation. Because of the vessel insufficiency in diabetic foot ulcers (DFU), vascular endothelial growth factor (VEGF) that simulates angiogenesis is of interest to promote wound healing. This systematic review evaluates the last 16 years of in-vivo studies with VEGF stimulation as a treatment for DFU, developed based on the last published systematic article. A total of 961 articles were identified through databases in two phases. 947 articles were excluded by exclusion criteria, and four articles met our inclusion criteria and were included. The effects of VEGF on wound healing were analysed in all four studies. In three studies, the VEGF-treated wounds showed statistically faster healing than those not treated with VEGF. In one study, the VEGF-treated wounds revealed a positive trend toward faster healing. Furthermore, all four studies were in favor of using VEGF, but concluded that further research is needed. These studies showed a positive trend towards faster healing and was safe when using VEGF topically on humans. Furthermore, viral particles of VEGF seem to have a systematic effect when a dose exceeding 5.0 × 109 vp pr wound. Future research in using VEGF on DFU should focus on VEGF's relevant dosage, release rate, and specific mechanism. This review inspires further research, and a consistent study design is prerequisite such that results are more homogenic and comparable. Much effort is needed to translate the results into our clinical practice.

2.
J Orthop Translat ; 45: 120-131, 2024 Mar.
Article En | MEDLINE | ID: mdl-38524868

Background: Reliable animal models are critical for preclinical research and should closely mimic the disease. With respect to route of infection, pathogenic agent, disease progression, clinical signs, and histopathological changes. Sheep have similar bone micro- and macrostructure as well as comparable biomechanical characteristics to humans. Their use in bone research is established, however their use in bone infection research is limited. This systematic review will summarise the key features of the available bone infection models using sheep, providing a reference for further development, validation, and application. Method: This systematic review was designed according to the PRISMA guidelines and registered with PROSPERO. Quality was assessed using SYRICLE's risk of bias tool adapted for animal studies. PubMed, MEDLINE, Web of Science and EMBASE were searched until March 2022.1921 articles were screened by two independent reviewers, and 25 were included for analysis. Results: Models have been developed in nine different breeds. Staphylococcus aureus was used in the majority of models, typically inoculating 108 colony forming units in tibial or femoral cortical defects. Infection was established with either planktonic or biofilm adherent bacteria, with or without foreign material implanted. Most studies used both radiological and microbiological analyses to confirm osteomyelitis. Conclusions: There is convincing evidence supporting the use of sheep in bone infection models of clinical disease. The majority of sheep studied demonstrated convincing osteomyelitis and tolerated the infection with minimal complications. Furthermore, the advantages of comparable biology and biomechanics may increase the success for translating in vivo results to successful therapies. The Translational potential of this article: In the realm of preclinical research, the translation to viable clinical therapies is often perilous, and the quest for reliable and representative animal models remains paramount. This systematic review accentuates the largely untapped potential of sheep as large animal models, especially in bone infection research. The anatomical and biomechanical parallels between sheep and human bone structures position sheep as an invaluable asset for studying osteomyelitis and periprosthetic joint infection. This comprehensive exploration of the literature demonstrates the robustness and translational promise of these models. Furthermore, this article underscores the potential applicability for sheep in developing effective therapeutic strategies for human bone infections.

3.
Biomed Res Int ; 2021: 6676609, 2021.
Article En | MEDLINE | ID: mdl-33763484

INTRODUCTION: Mesenchymal stem cells (MSCs) and vascular endothelial growth factor (VEGF) are key factors in bone regeneration. Further stimulation should establish an enhanced cell environment optimal for vessel evolvement and hereby being able to attract bone-forming cells. The aim of this study was to generate new bone by using MSCs and VEGF, being able to stimulate growth equal to allograft. METHODS: Eight Texel/Gotland sheep had four titanium implants in a size of 10 × 12 mm inserted into bilateral distal femurs, containing a 2 mm gap. In the gap, autologous 3 × 106 MSCs seeded on hydroxyapatite (HA) granules in combination with 10 ng, 100 ng, and 500 ng VEGF release/day were added. After 12 weeks, the implant-bone blocks were harvested, embedded, and sectioned for histomorphometric analysis. Bone formation and mechanical fixation were evaluated. Blood samples were collected for the determination of bone-related biomarkers and VEGF in serum at weeks 0, 1, 4, 8, and 12. RESULTS: The combination of 3 × 106 MSCs with 10 ng, 100 ng, and 500 ng VEGF release/day exhibited similar amount of bone formation within the gap as allograft (P > 0.05). Moreover, no difference in mechanical fixation was observed between the groups (P > 0.05). Serum biomarkers showed no significant difference compared to baseline (all P > 0.05). CONCLUSION: MSCs and VEGF exhibit significant bone regeneration, and their bone properties equal to allograft, with no systemic increase in osteogenic markers or VEGF with no visible side effects. This study indicates a possible new approach into solving the problem of insufficient allograft, in larger bone defects.


Femur , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Osteogenesis , Vascular Endothelial Growth Factor A/metabolism , Allografts , Animals , Female , Femur/injuries , Femur/metabolism , Sheep
4.
J Orthop Translat ; 24: 46-57, 2020 Sep.
Article En | MEDLINE | ID: mdl-32642428

BACKGROUND: To achieve optimal bone formation one of the most influential parameters has been mentioned to be adequate blood supply. Vascular endothelial growth factor (VEGF) is hereby of particular interest in bone regeneration, because of its primary ability to induce neovascularization and chemokine affection for endothelial cells (EC), and is considered to be the main regulator of vascular formation. However, the growth factor has yet to be implemented in a clinical setting in orthopaedic intervention surgery. We hypothesised that the development of VEGF in vivo for bone formation in the last decade had progressed towards clinical application since the latest systematic review from 2008. OBJECTIVE: This systematic review recapped the last 13 years of in vivo bone regeneration using vascular endothelial growth factor (VEGF). METHOD: A total of 1374 articles were identified using the PubMed search string (vegf or "vascular endothelial growth factor") and (osteogen∗ or "bone formation" or "bone regeneration"). By 3 selection phases 24 published articles were included by the criteria of being in vivo, using only VEGF for bone formation, published after 2007 and written in English. Articles in vitro, written in different languages than English and older than 2007 was excluded. The most recent systematic review on this subject was published in 2008, with the latest included study from 01 to 11-2007. All included studies were classified based on animal, type of defect, scaffold, control group, type of VEGF, release rate, dosage of VEGF, time of evaluation and results. Each study was evaluated for risk of bias by modified CAMARADES quality assessment for the use in experimental animal studies. The score was calculated by peer review journal publication, use of control group, randomisation of groups, justified VEGF dosage, blinding of results, details on animal model, sample size calculation, comply with ethics and no conflict of interest. RESULTS: No clinical trials or human application studies were obtained from our search. Experimentally, 11 articles using solely VEGF for bone formation had a group or a timepoint significantly better than the corresponding control group. 18 articles revealed no significant difference of VEGF compared to the control group and 1 article reported a significant decreased bone growth using VEGF compared to control. CONCLUSION: Based on these results no clinical studies have yet been performed. However, indications in the best use of VEGF from experimental studies could be made towards that the optimal release is within the first three weeks, in defect models, with the best effect before eight weeks. Future designs should incorporate this with standardised and reproducible models for verification towards clinical practice. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This systematic review aims to assess the existing literature to focus on methodologies and outcomes that can provide future knowledge regarding the solitary use of VEGF for bone regeneration in a clinical setting.

5.
Biomed Res Int ; 2020: 9358989, 2020.
Article En | MEDLINE | ID: mdl-32190690

Introduction. In the field of orthopaedic surgery, the use of osteogenic material in larger defects is essential. Autograft and allograft are both known methods, and autograft is believed to be the best choice. But autograft is associated with additional invasive procedures which can prove difficult in fragile patients and can cause local side effect after bone harvest. For feasible purposes, the use of allograft is hereby rising and comparing efficacies, and the differences between autograft and allograft are essential for the clinical outcome for the patients. METHOD: 24 female Norwegian brown rats were included, 12 normal rats and 12 induced with osteoporosis (OP). OP inducement was verified in vivo by bone volume fraction (BV/TV) at 90 days after ovariectomy (OVX). The primary surgery in each rat consisted of a 2.5 × 3 mm hole in the proximal tibia, bilaterally. Autograft and allograft were randomly allocated in the right and left tibia. After an observation of 21 days, the rats were sacrificed. Tibia samples were harvested, micro-CT scanned for bone inducement and microarchitectural properties, and then embedded for histology. RESULTS: The OP induction was verified three months after the OVX by a reduction of 68.5% in the trabecular bone BV/TV compared to normal bone. Microarchitectural analysis and histology showed no significant differences in the bone-forming capabilities between autograft and allograft in normal or osteoporotic bone after 3 weeks. CONCLUSION: This study did not demonstrate any difference between autograft and allograft in a normal or osteoporotic rat tibial defect model after 21 days, suggesting allograft is a good alternative to autograft.


Allografts/pathology , Autografts/pathology , Bone Transplantation , Bone and Bones/pathology , Animals , Bone Density , Female , Osteoporosis/pathology , Ovariectomy/methods , Rats , Tibia/pathology , Transplantation, Autologous/adverse effects , Transplantation, Autologous/methods , Transplantation, Homologous/adverse effects , Transplantation, Homologous/methods , X-Ray Microtomography
6.
J Biomed Mater Res A ; 105(12): 3326-3332, 2017 Dec.
Article En | MEDLINE | ID: mdl-28879669

INTRODUCTION: Insufficient blood supply may limit bone regeneration in bone defects. Vascular endothelial growth factor (VEGF) promotes angiogenesis by increasing endothelial migration. This outcome, however, could depend on time of application. Sheep mesenchymal stem cells (MSCs) in severe combined immunodeficient (SCID) mice were used in this study to evaluate optimal time points for VEGF stimulation to increase bone formation. METHODS: Twenty-eight SCID (NOD.CB17-Prkdcscid /J) mice had hydroxyapatite granules seeded with 5 × 105 MSCs inserted subcutaneous. Pellets released VEGF on days 1-7, days 1-14, days 1-21, days 1-42, days 7-14, and days 21-42. After 8 weeks, the implant-bone-blocks were harvested, paraffin embedded, sectioned, and stained with both hematoxylin and eosin (HE) and immunohistochemistry for human vimentin (hVim) staining. Blood samples were collected for determination of bone-related biomarkers in serum. RESULTS: The groups with 5 × 105 MSCs and VEGF stimulation on days 1-14 and days 1-21 showed more bone formation when compared to the control group of 5 × 105 MSCs alone (p < 0.01). Serum biomarkers had no significant values. The hVim staining confirmed the ovine origin of the observed ectopic bone formation. CONCLUSION: Optimal bone formation of MSCs was reached when stimulating with VEGF during the first 14 or 21 days after surgery. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3326-3332, 2017.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Biomarkers/blood , Cells, Cultured , Durapatite/chemistry , Female , Humans , Mesenchymal Stem Cell Transplantation/methods , Mice, Inbred NOD , Mice, SCID , Sheep , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/administration & dosage
7.
Stem Cells Int ; 2016: 3846971, 2016.
Article En | MEDLINE | ID: mdl-27994622

Background. Scaffolds for bone tissue engineering (BTE) can be loaded with stem and progenitor cells (SPC) from different sources to improve osteogenesis. SPC can be found in bone marrow, adipose tissue, and other tissues. Little is known about osteogenic potential of adipose-derived culture expanded, adherent cells (A-CEAC). This study compares in vivo osteogenic capacity between A-CEAC and bone marrow derived culture expanded, adherent cells (BM-CEAC). Method. A-CEAC and BM-CEAC were isolated from five female sheep and seeded on hydroxyapatite granules prior to subcutaneous implantation in immunodeficient mice. The doses of cells in the implants were 0.5 × 106, 1.0 × 106, or 1.5 × 106 A-CEAC and 0.5 × 106 BM-CEAC, respectively. After eight weeks, bone volume versus total tissue volume (BV/TV) was quantified using histomorphometry. Origin of new bone was assessed using human vimentin (HVIM) antibody staining. Results. BM-CEAC yielded significantly higher BV/TV than any A-CEAC group, and differences between A-CEAC groups were not statistically significant. HVIM antibody stain was successfully used to identify sheep cells in this model. Conclusion. A-CEAC and BM-CEAC were capable of forming bone, and BM-CEAC yielded significantly higher BV/TV than any A-CEAC group. In vitro treatment to enhance osteogenic capacity of A-CEAC is suggested for further research in ovine bone tissue engineering.

...