Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(9)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37764117

ABSTRACT

Bacteria employ a wide range of molecular mechanisms to confer resistance to bacteriophages, and these mechanisms are continuously being discovered and characterized. However, there are instances where certain bacterial species, despite lacking these known mechanisms, can still develop bacteriophage resistance through intricate metabolic adaptation strategies, potentially involving mutations in transcriptional regulators or phage receptors. Vibrio species have been particularly useful for studying the orchestrated metabolic responses of Gram-negative marine bacteria in various challenges. In a previous study, we demonstrated that Vibrio alginolyticus downregulates the expression of specific receptors and transporters in its membrane, which may enable the bacterium to evade infection by lytic bacteriophages. In our current study, our objective was to explore how the development of bacteriophage resistance in Vibrio species disrupts the quorum-sensing cascade, subsequently affecting bacterial physiology and metabolic capacity. Using a real-time quantitative PCR (rt-QPCR) platform, we examined the expression pattern of quorum-sensing genes, auto-inducer biosynthesis genes, and cell density regulatory proteins in phage-resistant strains. Our results revealed that bacteriophage-resistant bacteria downregulate the expression of quorum-sensing regulatory proteins, such as LuxM, LuxN, and LuxP. This downregulation attenuates the normal perception of quorum-sensing peptides and subsequently diminishes the expression of cell density regulatory proteins, including LuxU, aphA, and LuxR. These findings align with the diverse phenotypic traits observed in the phage-resistant strains, such as altered biofilm formation, reduced planktonic growth, and reduced virulence. Moreover, the transcriptional depletion of aphA, the master regulator associated with low cell density, was linked to the downregulation of genes related to virulence. This phenomenon appears to be phage-specific, suggesting a finely tuned metabolic adaptation driven by phage-host interaction. These findings contribute to our understanding of the role of Vibrio species in microbial marine ecology and highlight the complex interplay between phage resistance, quorum sensing, and bacterial physiology.

2.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175906

ABSTRACT

Vibrio harveyi, a significant opportunistic marine pathogen, has been a challenge to the aquaculture industry, leading to severe economical and production losses. Phage therapy has been an auspicious approach in controlling such bacterial infections in the era of antimicrobial resistance. In this study, we isolated and fully characterized a novel strain-specific phage, vB_VhaS_MAG7, which infects V. harveyi MM46, and tested its efficacy as a therapeutic agent in challenged gilthead seabream larvae. vB_VhaS_MAG7 is a tailed bacteriophage with a double-stranded DNA of 49,315 bp. No genes linked with virulence or antibiotic resistance were harbored in the genome. The phage had a remarkably large burst size of 1393 PFU cell-1 and showed strong lytic ability in in vitro assays. When applied in phage therapy trials in challenged gilthead seabream larvae, vB_VhaS_MAG7 was capable of improving the survival of the larvae up to 20%. Due to its distinct features and safety, vB_VhaS_MAG7 is considered a suitable candidate for applied phage therapy.


Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Vibrio , Animals , Bacteriophages/genetics , Vibrio/genetics , Bacterial Infections/genetics , Fishes/genetics , Genome, Viral
3.
Front Microbiol ; 14: 1078669, 2023.
Article in English | MEDLINE | ID: mdl-36925475

ABSTRACT

Tenacibaculum larymnensis sp. nov., a novel species of the Tenacibaculum genus was isolated from a commercial fish hatchery in Greece. The novel species is phylogenetically close to T. discolor and was biochemically and genetically characterized. The genome of T. larymnensis has 3.66 Mbps length, 31.83% GC content and the genomic analysis demonstrated that it harbors a wide enzymatic repertoire suggestive of increased degrading capacity but also several virulence factors including hemolysins, secretion systems, transporters, siderophores, pili and extracellular proteins. Using the novel strain, a virulent bacteriophage designated as Tenacibaculum phage Larrie was isolated and characterized. Larrie is a novel Siphovirus with relatively large genome, 77.5 kbps with 111 ORFs, a GC content of 33.7% and an exclusively lytic lifestyle. The new phage-host system can serve as an efficient model to study microbial interactions in the aquatic environment which contribute to the nutrient cycling.

4.
Pathogens ; 11(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36014969

ABSTRACT

Vibrio alginolyticus is an important pathogen of marine animals and has been the target of phage therapy applications in marine aquaculture for many years. Here, we report the isolation and partial characterization of a novel species of the Siphoviridae family, the Vibrio phage Artemius. The novel phage was species-specific and could only infect strains of V. alginolyticus. It could efficiently reduce the growth of the host bacterium at various multiplicities of infection as assessed by an in vitro lysis assay. It had a genome length of 43,349 base pairs. The complete genome has double-stranded DNA with a G + C content of 43.61%. In total, 57 ORFs were identified, of which 19 were assigned a predicted function. A genomic analysis indicated that Vibrio phage Artemius is lytic and does not harbor genes encoding toxins and antibiotic resistance determinants.

5.
Pathogens ; 11(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35745484

ABSTRACT

Due to the emergence of multidrug-resistant bacteria, commonly known as "superbugs", phage therapy for the control of bacterial diseases rose in popularity. In this context, the use of phages for the management of many important bacterial diseases in the aquaculture environment is auspicious. Vibrio harveyi, a well-known and serious bacterial pathogen, is responsible for many disease outbreaks in aquaculture, resulting in huge economic and production losses. We isolated and fully characterized a novel bacteriophage, Vibrio phage Virtus, infecting V. harveyi strain VH2. Vibrio phage Virtus can infect a wide spectrum of Vibrio spp., including strains of V. harveyi, V. owensii, V. campbellii, V. parahaemolyticus, and V. mediterranei. It has a latent period of 40 min with an unusually high burst size of 3200 PFU/cell. Vibrio phage Virtus has a double-stranded DNA of 82,960 base pairs with 127 predicted open reading frames (ORFs). No virulence, antibiotic resistance, or integrase-encoding genes were detected. In vivo phage therapy trials in gilthead seabream, Sparus aurata, larvae demonstrated that Vibrio phage Virtus was able to significantly improve the survival of larvae for five days at a multiplicity of infection (MOI) of 10, which suggests that it can be an excellent candidate for phage therapy.

6.
Metabolism ; 100: 153958, 2019 11.
Article in English | MEDLINE | ID: mdl-31400387

ABSTRACT

Glutamate dehydrogenase 1 (GDH1) contributes to glucose-stimulated insulin secretion in murine ß-cells, but not to basic insulin release. The implications of these findings for human biology are unclear as humans have two GDH-specific enzymes: hGDH1 (GLUD1-encoded) and hGDH2 (GLUD2-encoded), a novel enzyme that is highly activated by ADP and L-leucine. Here we studied in vivo glucose homeostasis in transgenic (Tg) mice generated by inserting the GLUD2 gene and its putative regulatory elements into their genome. Using specific antibodies, we observed that hGDH2 was co-expressed with the endogenous murine GDH1 in pancreatic ß-cells of Tg mice. Fasting blood glucose (FBG) levels were lower and of a narrower range in Tg (95% CI: 90.6-96.8 mg/dl; N = 26) than in Wt mice (95% CI: 136.2-151.4 mg/dl; N = 23; p < 0.0001), closely resembling those of healthy humans. GLUD2 also protected the host mouse from developing diabetes with advancing age. Tg animals maintained 2.6-fold higher fasting serum insulin levels (mean ±â€¯SD: 1.63 ±â€¯0.15 ng/ml; N = 12) than Wt mice (0.63 ±â€¯0.05 ng/ml; N = 12; p < 0.0001). Glucose loading (1 mg/g, given i.p.) induced comparable serum insulin increases in Tg and Wt mice, suggesting no significant GLUD2 effect on glucose-stimulated insulin release. L-leucine (0.25 mg/g given orally) induced a 2-fold increase in the serum insulin of the Wt mice, implying significant activation of the endogenous GDH1. However, L-leucine had little effect on the high insulin levels of the Tg mice, suggesting that, under the high ADP levels that prevail in ß-cells in the fasting state, glutamate flux through hGDH2 is close to maximal. Hence, the present data, showing that GLUD2 expression in Tg mice improves in vivo glucose homeostasis by boosting fasting serum insulin levels, suggest that evolutionary adaptation of hGDH2 has enabled humans to achieve narrow-range euglycemia by regulating glutamate-mediated basal insulin secretion.


Subject(s)
Glucose/metabolism , Glutamate Dehydrogenase/genetics , Homeostasis , Insulin Secretion , Animals , Glucose 1-Dehydrogenase/metabolism , Humans , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...