Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 20(9): 3659-3668, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38669448

ABSTRACT

We show that accurate oscillator strengths can be obtained from adiabatic connection (AC) approaches based on the extended random phase approximation (ERPA) combined with multireference (complete active space, CAS) wave functions. The oscillator strengths calculated using the perturbation-corrected ERPA transition density matrices, proposed in this work, and the excitation energies calculated with recently introduced AC correlation energy methods, AC0 and AC0D, compete with accuracy in the perturbational CASPT2 approach and require less computational effort. AC0 and AC0D methods scale more favorably with the number of active orbitals than multiconfigurational perturbation approaches like CASPT2 and NEVPT2 thanks to their dependence on reduced density matrices up to the order of 2. Importantly, the newly developed approach for computing correlated transition dipole moments does not entail any additional costs, as all intermediate quantities become available when AC0 energies are being computed. We also test the performance of the recently proposed AC method corrected for the negative-transition contributions to the correlation energy, AC0D, for triplet excitation energies. Similarly, as for the singlet excitations, the correction improves the performance of the AC0 method, particularly for the low-lying excited states.

2.
J Chem Theory Comput ; 19(21): 7606-7616, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37864544

ABSTRACT

The new generation of proposed light-emitting molecules for organic light-emitting diodes (OLEDs) has raised considerable research interest due to its exceptional feature─a negative singlet-triplet (ST) gap violating Hund's multiplicity rule in the excited S1 and T1 states. We investigate the role of spin polarization in the mechanism of ST gap inversion. Spin polarization is associated with doubly excited determinants of certain types, whose presence in the wave function expansion favors the energy of the singlet state more than that of the triplet. Using a perturbation theory-based model for spin polarization, we propose a simple descriptor for prescreening of candidate molecules with negative ST gaps and prove its usefulness for heptazine-type molecules. Numerical results show that the quantitative effect of spin polarization decreases linearly with the increasing highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) exchange integral. Comparison of single- and multireference coupled-cluster predictions of ST gaps shows that the former methods provide good accuracy by correctly balancing the effects of doubly excited determinants and dynamic correlation. We also show that accurate ST gaps may be obtained using a complete active space model supplemented with dynamic correlation from multireference adiabatic connection theory.

3.
Sci Rep ; 12(1): 16834, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207351

ABSTRACT

Diarylethenes (DAEs), promising photochromic molecular switches, undergo pericyclic reactions upon ultraviolet or visible light illumination. For this reason, most studies on DAEs employ UV-vis spectroscopies. However, also their infrared (IR) spectra are valuable, in particular, for understanding the vibrational dynamics which accompanies the relevant photoreactions. An accurate assignment of IR bands to molecular modes can be achieved through a comparison between experimental and computed theoretical spectra. Even though more sophisticated computational methods are available, the density functional theory (DFT) is usually employed for this task, because of its modest cost and versatility. Here, we have tested the ability of several DFT functionals to reproduce the wide-range, 400-3200 cm-1, IR spectra of open and closed isomers of four representative DAE molecules. We find that global and range-separated, corrected for anharmonicity by scaling factors, hybrid DFT functionals are able to reproduce the IR spectra of DAEs, however, instead of the popular B3LYP functional we propose the use of the dispersion-corrected PBE0 functional. The paper also proposes a semi-automatic method of band assignment.

4.
J Phys Chem Lett ; 13(20): 4570-4578, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35580342

ABSTRACT

Strong electron correlation can be captured with multireference wave function methods, but an accurate description of the electronic structure requires accounting for the dynamic correlation, which they miss. In this work, a new approach for the correlation energy based on the adiabatic connection (AC) is proposed. The ACn method accounts for terms up to order n in the coupling constant, and it is size-consistent and free from instabilities. It employs the multireference random phase approximation and the Cholesky decomposition technique, leading to a computational cost growing with the fifth power of the system size. Because of the dependence on only one- and two-electron reduced density matrices, ACn is more efficient than existing ab initio multireference dynamic correlation methods. ACn affords excellent results for singlet-triplet gaps of challenging organic biradicals. The development presented in this work opens new perspectives for accurate calculations of systems with dozens of strongly correlated electrons.

5.
J Chem Phys ; 154(16): 164102, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940850

ABSTRACT

The adiabatic connection (AC) theory offers an alternative to the perturbation theory methods for computing correlation energy in the multireference wavefunction framework. We show that the AC correlation energy formula can be expressed in terms of the density linear response function as a sum of components related to positive and negative parts of the transition energy spectrum. Consequently, generalization of the adiabatic connection fluctuation-dissipation theory to electronically excited states is obtained. The component of the linear response function related to the negative-transition energy enters the correlation energy expression with an opposite sign to that of the positive-transition part and is non-negligible in the description of excited states. To illustrate this, we analyze the approximate AC model in which the linear response function is obtained in the extended random phase approximation (ERPA). We demonstrate that AC can be successfully combined with the ERPA for excited states, provided that the negative-excitation component of the response function is rigorously accounted for. The resulting AC0D model, an extension of the AC0 scheme introduced in our earlier works, is applied to a benchmark set of singlet excitation energies of organic molecules. AC0D constitutes a significant improvement over AC0 by bringing the excitation energies of the lowest excited states to a satisfactory agreement with theoretical best estimates, which parallels or even exceeds the accuracy of the n-electron valence state perturbation theory method. For higher excitations, AC0D is less reliable due to the gradual deterioration of the underlying ERPA linear response.

SELECTION OF CITATIONS
SEARCH DETAIL
...