Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Dev Cell ; 58(22): 2411-2412, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37989079

ABSTRACT

T cell development relies on a supportive epithelial microenvironment. Embryonic and postnatal epithelial progenitors have been identified in mice, but not humans. In this issue of Developmental Cell, Raggazzini et al. use scRNAseq, spatial sequencing, and clonogenic assays to identify a putative bipotent TEPC in pediatric human thymic tissue.


Subject(s)
Stem Cells , Thymus Gland , Humans , Mice , Animals , Child , Cell Differentiation , Stem Cell Niche , Epithelial Cells
2.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711570

ABSTRACT

Endogenous thymic regeneration is a crucial process that allows for the renewal of immune competence following stress, infection or cytoreductive conditioning. Fully understanding the molecular mechanisms driving regeneration will uncover therapeutic targets to enhance regeneration. We previously demonstrated that high levels of homeostatic apoptosis suppress regeneration and that a reduction in the presence of damage-induced apoptotic thymocytes facilitates regeneration. Here we identified that cell-specific metabolic remodeling after ionizing radiation steers thymocytes towards mitochondrial-driven pyroptotic cell death. We further identified that a key damage-associated molecular pattern (DAMP), ATP, stimulates the cell surface purinergic receptor P2Y2 on cortical thymic epithelial cells (cTECs) acutely after damage, enhancing expression of Foxn1, the critical thymic transcription factor. Targeting the P2Y2 receptor with the agonist UTPγS promotes rapid regeneration of the thymus in vivo following acute damage. Together these data demonstrate that intrinsic metabolic regulation of pyruvate processing is a critical process driving thymus repair and identifies the P2Y2 receptor as a novel molecular therapeutic target to enhance thymus regeneration.

3.
Proc Natl Acad Sci U S A ; 119(17): e2121028119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35439062

ABSTRACT

Secondary lymphoid organs (SLOs) (including the spleen and lymph nodes [LNs]) are critical both for the maintenance of naive T (TN) lymphocytes and for the initiation and coordination of immune responses. How they age, including the exact timing, extent, physiological relevance, and the nature of age-related changes, remains incompletely understood. We used "time stamping" to indelibly mark newly generated naive T cells (also known as recent thymic emigrants) (RTEs) in mice, and followed their presence, phenotype, and retention in SLOs. We found that SLOs involute asynchronously. Skin-draining LNs atrophied by 6 to 9 mo in life, whereas deeper tissue-draining LNs atrophied by 18 to 20 mo, as measured by the loss of both TN numbers and the fibroblastic reticular cell (FRC) network. Time-stamped RTEs at all ages entered SLOs and successfully completed postthymic differentiation, but the capacity of older SLOs to maintain TN numbers was reduced with aging, and that trait did not depend on the age of TNs. However, in SLOs of older mice, these cells exhibited an emigration phenotype (CCR7loS1P1hi), which correlated with an increase of the cells of the same phenotype in the blood. Finally, upon intradermal immunization, RTEs generated in mice barely participated in de novo immune responses and failed to produce well-armed effector cells detectable in blood as early as by 7 to 8 mo of age. These results highlight changes in structure and function of superficial secondary lymphoid organs in laboratory mice that are earlier than expected and are consistent with the long-appreciated reduction of cutaneous immunity with aging.


Subject(s)
Lymph Nodes , Skin , Aging , Animals , Atrophy/pathology , Mice , Mice, Inbred C57BL , Skin/pathology
4.
Blood ; 139(25): 3655-3666, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35357432

ABSTRACT

Prolonged lymphopenia represents a major clinical problem after cytoreductive therapies such as chemotherapy and the conditioning required for hematopoietic stem cell transplant (HCT), contributing to the risk of infections and malignant relapse. Restoration of T-cell immunity depends on tissue regeneration in the thymus, the primary site of T-cell development, although the capacity of the thymus to repair itself diminishes over its lifespan. However, although boosting thymic function and T-cell reconstitution is of considerable clinical importance, there are currently no approved therapies for treating lymphopenia. Here we found that zinc (Zn) is critically important for both normal T-cell development and repair after acute damage. Accumulated Zn in thymocytes during development was released into the extracellular milieu after HCT conditioning, where it triggered regeneration by stimulating endothelial cell production of BMP4 via the cell surface receptor GPR39. Dietary supplementation of Zn was sufficient to promote thymic function in a mouse model of allogeneic HCT, including enhancing the number of recent thymic emigrants in circulation although direct targeting of GPR39 with a small molecule agonist enhanced thymic function without the need for prior Zn accumulation in thymocytes. Together, these findings not only define an important pathway underlying tissue regeneration but also offer an innovative preclinical approach to treat lymphopenia in HCT recipients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphopenia , Receptors, G-Protein-Coupled , Animals , Cell Differentiation , Mice , Receptors, G-Protein-Coupled/genetics , Thymus Gland/metabolism , Transplantation, Homologous , Zinc/metabolism
5.
Aging Cell ; 21(4): e13582, 2022 04.
Article in English | MEDLINE | ID: mdl-35289071

ABSTRACT

Older humans and animals often exhibit reduced immune responses to infection and vaccination, and this often directly correlates to the numbers and frequency of naive T (Tn) cells. We found such a correlation between reduced numbers of blood CD8+ Tn cells and severe clinical outcomes of West Nile virus (WNV) in both humans naturally exposed to, and mice experimentally infected with, WNV. To examine possible causality, we sought to increase the number of CD8 Tn cells by treating C57BL/6 mice with IL-7 complexes (IL-7C, anti-IL-7 mAb bound to IL-7), shown previously to efficiently increase peripheral T-cell numbers by homeostatic proliferation. T cells underwent robust expansion following IL-7C administration to old mice increasing the number of total T cells (>fourfold) and NS4b:H-2Db -restricted antigen-specific CD8 T cells (twofold). This improved the numbers of NS4b-specific CD8 T cells detected at the peak of the response against WNV, but not survival of WNV challenge. IL-7C-treated old animals also showed no improvement in WNV-specific effector immunity (neutralizing antibody and in vivo T-cell cytotoxicity). To test quantitative limits to which CD8 Tn cell restoration could improve protective immunity, we transferred graded doses of Ag-specific precursors into old mice and showed that injection of 5400 (but not of 1800 or 600) adult naive WNV-specific CD8 T cells significantly increased survival after WNV. These results set quantitative limits to the level of Tn reconstitution necessary to improve immune defense in older organisms and are discussed in light of targets of immune reconstitution.


Subject(s)
West Nile Fever , West Nile virus , Animals , CD8-Positive T-Lymphocytes , Cell Count , Interleukin-7 , Mice , Mice, Inbred C57BL
6.
Cell Rep ; 37(1): 109789, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34610317

ABSTRACT

The thymus, which is the primary site of T cell development, is particularly sensitive to insult but also has a remarkable capacity for repair. However, the mechanisms orchestrating regeneration are poorly understood, and delayed repair is common after cytoreductive therapies. Here, we demonstrate a trigger of thymic regeneration, centered on detecting the loss of dying thymocytes that are abundant during steady-state T cell development. Specifically, apoptotic thymocytes suppressed production of the regenerative factors IL-23 and BMP4 via TAM receptor signaling and activation of the Rho-GTPase Rac1, the intracellular pattern recognition receptor NOD2, and micro-RNA-29c. However, after damage, when profound thymocyte depletion occurs, this TAM-Rac1-NOD2-miR29c pathway is attenuated, increasing production of IL-23 and BMP4. Notably, pharmacological inhibition of Rac1-GTPase enhanced thymic function after acute damage. These findings identify a complex trigger of tissue regeneration and offer a regenerative strategy for restoring immune competence in patients whose thymic function has been compromised.


Subject(s)
Apoptosis , Regeneration , Thymus Gland/physiology , Animals , Bone Morphogenetic Protein 4/metabolism , Female , Interleukin-23/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Nod2 Signaling Adaptor Protein/deficiency , Nod2 Signaling Adaptor Protein/genetics , Phosphatidylserines/metabolism , Pyrones/pharmacology , Quinolines/pharmacology , Regeneration/drug effects , Thymocytes/cytology , Thymocytes/metabolism , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/metabolism
7.
Semin Immunopathol ; 43(1): 119-134, 2021 02.
Article in English | MEDLINE | ID: mdl-33608819

ABSTRACT

T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.


Subject(s)
Hematopoietic Stem Cell Transplantation , T-Lymphocytes , Antigens , Cell Communication , Humans , Receptors, Antigen, T-Cell/genetics
9.
Front Immunol ; 11: 1745, 2020.
Article in English | MEDLINE | ID: mdl-32903477

ABSTRACT

Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.


Subject(s)
Cell Proliferation , Epithelial Cells/pathology , Regeneration , Thymocytes/pathology , Thymus Gland/physiopathology , Animals , Cell Communication , Cell Proliferation/drug effects , Cellular Microenvironment , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/metabolism , Humans , Immunologic Factors/therapeutic use , Regeneration/drug effects , Signal Transduction , Thymocytes/drug effects , Thymocytes/immunology , Thymocytes/metabolism , Thymus Gland/drug effects , Thymus Gland/immunology , Thymus Gland/pathology
10.
Cancer Cell ; 35(3): 489-503.e8, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30889382

ABSTRACT

Many potential targets for CAR-T cells in solid tumors are expressed in some normal tissues, raising concern for off-tumor toxicity. Following lymphodepletion, CAR-T cells targeting the tumor-associated antigen ROR1 lysed tumors in mice but induced lethal bone marrow failure due to recognition of ROR1+ stromal cells. To improve selectivity, we engineered T cells with synthetic Notch (synNotch) receptors specific for EpCAM or B7-H3, which are expressed on ROR1+ tumor cells but not ROR1+ stromal cells. SynNotch receptors induced ROR1 CAR expression selectively within the tumor, resulting in tumor regression without toxicity when tumor cells were segregated from, but not when co-localized with, normal ROR1+ cells. This strategy, thus, permits safe targeting of tumors that are sufficiently separated from normal cells.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptors, Chimeric Antigen/immunology , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , K562 Cells , Mice , Neoplasms/immunology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
11.
Blood ; 132(26): 2763-2774, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30381375

ABSTRACT

Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a ubiquitously expressed transcription factor that is well known for its role in regulating the cellular redox pathway. Although there is mounting evidence suggesting a critical role for Nrf2 in hematopoietic stem cells and innate leukocytes, little is known about its involvement in T-cell biology. In this study, we identified a novel role for Nrf2 in regulating alloreactive T-cell function during allogeneic hematopoietic cell transplantation (allo-HCT). We observed increased expression and nuclear translocation of Nrf2 upon T-cell activation in vitro, especially in CD4+ donor T cells after allo-HCT. Allo-HCT recipients of Nrf2 -/- donor T cells had significantly less acute graft-versus-host disease (GVHD)-induced mortality, morbidity, and pathology. This reduction in GVHD was associated with the persistence of Helios+ donor regulatory T cells in the allograft, as well as defective upregulation of the gut-homing receptor LPAM-1 on alloreactive CD8+ T cells. Additionally, Nrf2 -/- donor CD8+ T cells demonstrated intact cytotoxicity against allogeneic target cells. Tumor-bearing allo-HCT recipients of Nrf2 -/- donor T cells had overall improved survival as a result of preserved graft-versus-tumor activity and reduced GVHD activity. Our findings characterized a previously unrecognized role for Nrf2 in T-cell function, as well as revealed a novel therapeutic target to improve the outcomes of allo-HCT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Lymphocyte Activation , NF-E2-Related Factor 2/immunology , Neoplasms, Experimental/immunology , Acute Disease , Allografts , Animals , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy
13.
Nat Med ; 24(2): 239-246, 2018 02.
Article in English | MEDLINE | ID: mdl-29309056

ABSTRACT

There is a substantial unmet clinical need for new strategies to protect the hematopoietic stem cell (HSC) pool and regenerate hematopoiesis after radiation injury from either cancer therapy or accidental exposure. Increasing evidence suggests that sex hormones, beyond their role in promoting sexual dimorphism, regulate HSC self-renewal, differentiation, and proliferation. We and others have previously reported that sex-steroid ablation promotes bone marrow (BM) lymphopoiesis and HSC recovery in aged and immunodepleted mice. Here we found that a luteinizing hormone (LH)-releasing hormone antagonist (LHRH-Ant), currently in wide clinical use for sex-steroid inhibition, promoted hematopoietic recovery and mouse survival when administered 24 h after an otherwise-lethal dose of total-body irradiation (L-TBI). Unexpectedly, this protective effect was independent of sex steroids and instead relied on suppression of LH levels. Human and mouse long-term self-renewing HSCs (LT-HSCs) expressed high levels of the LH/choriogonadotropin receptor (LHCGR) and expanded ex vivo when stimulated with LH. In contrast, the suppression of LH after L-TBI inhibited entry of HSCs into the cell cycle, thus promoting HSC quiescence and protecting the cells from exhaustion. These findings reveal a role of LH in regulating HSC function and offer a new therapeutic approach for hematopoietic regeneration after hematopoietic injury.


Subject(s)
Cell Self Renewal/genetics , Hematopoietic Stem Cells/metabolism , Luteinizing Hormone/metabolism , Radiation Injuries, Experimental/drug therapy , Animals , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Proliferation/radiation effects , Cell Self Renewal/drug effects , Cell Self Renewal/radiation effects , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoiesis/radiation effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Humans , Luteinizing Hormone/pharmacology , Mice , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Receptors, LH/genetics , Regeneration/drug effects , Regeneration/genetics , Regeneration/radiation effects , Signal Transduction/drug effects , Signal Transduction/radiation effects , Whole-Body Irradiation
14.
Sci Immunol ; 3(19)2018 01 12.
Article in English | MEDLINE | ID: mdl-29330161

ABSTRACT

The thymus is not only extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood, and this capacity diminishes considerably with age. We show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration via their production of bone morphogenetic protein 4 (BMP4) ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signaling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance, and regeneration, and its downstream targets such as Dll4, a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Endothelial Cells/metabolism , Regeneration/physiology , Thymus Gland/metabolism , Thymus Gland/physiology , Animals , Cell Proliferation/physiology , Endothelial Cells/physiology , Epithelial Cells/metabolism , Epithelial Cells/physiology , Female , Forkhead Transcription Factors/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , Stem Cells/metabolism , Stem Cells/physiology , T-Lymphocytes/metabolism , T-Lymphocytes/physiology
15.
J Exp Med ; 214(9): 2733-2758, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-28798028

ABSTRACT

In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)-restricted αß T cell receptor (TCR) T cells and non-MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αß TCR versus γδ TCR T cells remain unclear. Here, we show that the tyrosine phosphatase PTPN2 attenuates STAT5 (signal transducer and activator of transcription 5) signaling to regulate T cell lineage commitment and SRC family kinase LCK and STAT5 signaling to regulate αß TCR versus γδ TCR T cell development. Our findings identify PTPN2 as an important regulator of critical checkpoints that dictate the commitment of multipotent precursors to the T cell lineage and their subsequent maturation into αß TCR or γδ TCR T cells.


Subject(s)
Cell Lineage/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/physiology , Receptors, Antigen, T-Cell, alpha-beta/physiology , Receptors, Antigen, T-Cell, gamma-delta/physiology , T-Lymphocytes/physiology , Animals , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Multipotent Stem Cells/physiology , STAT5 Transcription Factor/physiology
16.
Blood ; 130(7): 933-942, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28607133

ABSTRACT

Graft-versus-host disease (GVHD) and posttransplant immunodeficiency are frequently related complications of allogeneic hematopoietic transplantation. Alloreactive donor T cells can damage thymic epithelium, thus limiting new T-cell development. Although the thymus has a remarkable capacity to regenerate after injury, endogenous thymic regeneration is impaired in GVHD. The mechanisms leading to this regenerative failure are largely unknown. Here we demonstrate in experimental mouse models that GVHD results in depletion of intrathymic group 3 innate lymphoid cells (ILC3s) necessary for thymic regeneration. Loss of thymic ILC3s resulted in deficiency of intrathymic interleukin-22 (IL-22) compared with transplant recipients without GVHD, thereby inhibiting IL-22-mediated protection of thymic epithelial cells (TECs) and impairing recovery of thymopoiesis. Conversely, abrogating IL-21 receptor signaling in donor T cells and inhibiting the elimination of thymic ILCs improved thymopoiesis in an IL-22-dependent fashion. We found that the thymopoietic impairment in GVHD associated with loss of ILCs could be improved by restoration of IL-22 signaling. Despite uninhibited alloreactivity, exogenous IL-22 administration posttransplant resulted in increased recovery of thymopoiesis and development of new thymus-derived peripheral T cells. Our study highlights the role of innate immune function in thymic regeneration and restoration of adaptive immunity posttransplant. Manipulation of the ILC-IL-22-TEC axis may be useful for augmenting immune reconstitution after clinical hematopoietic transplantation and other settings of T-cell deficiency.


Subject(s)
Graft vs Host Disease/immunology , Immunity, Innate , Lymphocytes/immunology , Thymus Gland/immunology , Animals , Bone Marrow Transplantation , Interleukins/deficiency , Interleukins/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Signal Transduction , T-Lymphocytes, Regulatory/immunology , Interleukin-22
17.
Sci Transl Med ; 9(386)2017 04 19.
Article in English | MEDLINE | ID: mdl-28424327

ABSTRACT

The molecular pathways that regulate the tissue repair function of type I interferon (IFN-I) during acute tissue damage are poorly understood. We describe a protective role for IFN-I and the RIG-I/MAVS signaling pathway during acute tissue damage in mice. Mice lacking mitochondrial antiviral-signaling protein (MAVS) were more sensitive to total body irradiation- and chemotherapy-induced intestinal barrier damage. These mice developed worse graft-versus-host disease (GVHD) in a preclinical model of allogeneic hematopoietic stem cell transplantation (allo-HSCT) than did wild-type mice. This phenotype was not associated with changes in the intestinal microbiota but was associated with reduced gut epithelial integrity. Conversely, targeted activation of the RIG-I pathway during tissue injury promoted gut barrier integrity and reduced GVHD. Recombinant IFN-I or IFN-I expression induced by RIG-I promoted growth of intestinal organoids in vitro and production of the antimicrobial peptide regenerating islet-derived protein 3 γ (RegIIIγ). Our findings were not confined to RIG-I/MAVS signaling because targeted engagement of the STING (stimulator of interferon genes) pathway also protected gut barrier function and reduced GVHD. Consistent with this, STING-deficient mice suffered worse GVHD after allo-HSCT than did wild-type mice. Overall, our data suggest that activation of either RIG-I/MAVS or STING pathways during acute intestinal tissue injury in mice resulted in IFN-I signaling that maintained gut epithelial barrier integrity and reduced GVHD severity. Targeting these pathways may help to prevent acute intestinal injury and GVHD during allogeneic transplantation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DEAD Box Protein 58/metabolism , Intestinal Mucosa/metabolism , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , DEAD Box Protein 58/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Hematopoietic Stem Cell Transplantation , Interferon Type I/metabolism , Intestines/radiation effects , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/physiology , Organoids/cytology , Organoids/metabolism , Polymerase Chain Reaction , Signal Transduction/physiology , Transplantation, Homologous
18.
Nat Med ; 23(2): 242-249, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28067900

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. However, graft-versus-host disease (GVHD) and relapse after allo-HSCT remain major impediments to the success of allo-HSCT. Chimeric antigen receptors (CARs) direct tumor cell recognition of adoptively transferred T cells. CD19 is an attractive CAR target, which is expressed in most B cell malignancies, as well as in healthy B cells. Clinical trials using autologous CD19-targeted T cells have shown remarkable promise in various B cell malignancies. However, the use of allogeneic CAR T cells poses a concern in that it may increase risk of the occurrence of GVHD, although this has not been reported in selected patients infused with donor-derived CD19 CAR T cells after allo-HSCT. To understand the mechanism whereby allogeneic CD19 CAR T cells may mediate anti-lymphoma activity without causing a significant increase in the incidence of GVHD, we studied donor-derived CD19 CAR T cells in allo-HSCT and lymphoma models in mice. We demonstrate that alloreactive T cells expressing CD28-costimulated CD19 CARs experience enhanced stimulation, resulting in the progressive loss of both their effector function and proliferative potential, clonal deletion, and significantly decreased occurrence of GVHD. Concurrently, the other CAR T cells that were present in bulk donor T cell populations retained their anti-lymphoma activity in accordance with the requirement that both the T cell receptor (TCR) and CAR be engaged to accelerate T cell exhaustion. In contrast, first-generation and 4-1BB-costimulated CAR T cells increased the occurrence of GVHD. These findings could explain the reduced risk of GVHD occurring with cumulative TCR and CAR signaling.


Subject(s)
Graft vs Host Reaction/immunology , Graft vs Tumor Effect/immunology , Hematopoietic Stem Cell Transplantation , Lymphoma/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , 4-1BB Ligand/immunology , Adoptive Transfer , Animals , Antigens, CD19/metabolism , B-Lymphocytes/immunology , CD28 Antigens , Chimera , Cytokines/immunology , Disease Models, Animal , Flow Cytometry , Graft vs Host Disease/immunology , Mice , T-Lymphocytes/metabolism , Transplantation, Homologous
19.
Nat Commun ; 7: 11492, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27173585

ABSTRACT

Parental behavioural traits can be transmitted by non-genetic mechanisms to the offspring. Although trait transmission via sperm has been extensively researched, epidemiological studies indicate the exclusive/prominent maternal transmission of many non-genetic traits. Since maternal conditions impact the offspring during gametogenesis and through fetal/early-postnatal life, the resultant phenotype is likely the aggregate of consecutive germline and somatic effects; a concept that has not been previously studied. Here, we dissected a complex maternally transmitted phenotype, reminiscent of comorbid generalized anxiety/depression, to elementary behaviours/domains and their transmission mechanisms in mice. We show that four anxiety/stress-reactive traits are transmitted via independent iterative-somatic and gametic epigenetic mechanisms across multiple generations. Somatic/gametic transmission alters DNA methylation at enhancers within synaptic genes whose functions can be linked to the behavioural traits. Traits have generation-dependent penetrance and sex specificity resulting in pleiotropy. A transmission-pathway-based concept can refine current inheritance models of psychiatric diseases and facilitate the development of better animal models and new therapeutic approaches.


Subject(s)
Behavior, Animal/physiology , Epigenesis, Genetic , Germ Cells/physiology , Maternal Inheritance/physiology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Anxiety/genetics , Anxiety/psychology , DNA Methylation/genetics , Disease Models, Animal , Female , Gametogenesis/physiology , Genomic Imprinting/physiology , Hypothermia/chemically induced , Hypothermia/genetics , Hypothermia/psychology , Male , Metabolomics/methods , Mice , Mice, Knockout , Models, Animal , Penetrance , Phenotype , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin Receptor Agonists/pharmacology , Stress, Psychological/genetics , Stress, Psychological/psychology
20.
Sci Transl Med ; 8(339): 339ra71, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27194729

ABSTRACT

Intestinal bacteria may modulate the risk of infection and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients often develop neutropenic fever, which is treated with antibiotics that may target anaerobic bacteria in the gut. We retrospectively examined 857 allo-HSCT recipients and found that treatment of neutropenic fever with imipenem-cilastatin and piperacillin-tazobactam antibiotics was associated with increased GVHD-related mortality at 5 years (21.5% for imipenem-cilastatin-treated patients versus 13.1% for untreated patients, P = 0.025; 19.8% for piperacillin-tazobactam-treated patients versus 11.9% for untreated patients, P = 0.007). However, two other antibiotics also used to treat neutropenic fever, aztreonam and cefepime, were not associated with GVHD-related mortality (P = 0.78 and P = 0.98, respectively). Analysis of stool specimens from allo-HSCT recipients showed that piperacillin-tazobactam administration was associated with perturbation of gut microbial composition. Studies in mice demonstrated aggravated GVHD mortality with imipenem-cilastatin or piperacillin-tazobactam compared to aztreonam (P < 0.01 and P < 0.05, respectively). We found pathological evidence for increased GVHD in the colon of imipenem-cilastatin-treated mice (P < 0.05), but no difference in the concentration of short-chain fatty acids or numbers of regulatory T cells. Notably, imipenem-cilastatin treatment of mice with GVHD led to loss of the protective mucus lining of the colon (P < 0.01) and the compromising of intestinal barrier function (P < 0.05). Sequencing of mouse stool specimens showed an increase in Akkermansia muciniphila (P < 0.001), a commensal bacterium with mucus-degrading capabilities, raising the possibility that mucus degradation may contribute to murine GVHD. We demonstrate an underappreciated risk for the treatment of allo-HSCT recipients with antibiotics that may exacerbate GVHD in the colon.


Subject(s)
Graft vs Host Disease/microbiology , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous/adverse effects , Animals , Anti-Bacterial Agents , CD4-Positive T-Lymphocytes/metabolism , Cilastatin/therapeutic use , Cilastatin, Imipenem Drug Combination , Colon/microbiology , Drug Combinations , Feces/microbiology , Female , Flow Cytometry , Gastrointestinal Microbiome/drug effects , Graft vs Host Disease/etiology , Humans , Imipenem/therapeutic use , Interleukin-23 , Mice , Mice, Inbred C57BL , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/therapeutic use , Phylogeny , Piperacillin/therapeutic use , Piperacillin, Tazobactam Drug Combination , Verrucomicrobia/classification , Verrucomicrobia/drug effects , Verrucomicrobia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...