Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Food Res Int ; 173(Pt 2): 113448, 2023 11.
Article in English | MEDLINE | ID: mdl-37803774

ABSTRACT

In the last few years, there has been a growing interest in the more efficient utilization of agricultural and food by-products. Apples are among the most processed fruits in the world that generate huge quantities of processing waste biomasses. Therefore, the objective of this study was to improve the nutritional value of apple pomaces with γ-linolenic acid (GLA) and carotenoid pigments by solid-state fermentation (SSF) using two Zygomycetes fungi (Actinomucor elegans and Umbelopsis isabellina). The impact of fermentation periods on the polyphenol content and antioxidant capacity of the bioprocessed apple pomace was also investigated. The accumulated lipids were composed primarily of neutral fractions (mostly triacylglycerols). SSF with U. isabellina yielded a 12.72% higher GLA content than with A. elegans (3.85 g GLA/kg DW of pomace). Contrary to the lipogenic capacity, A. elegans showed higher carotenoids and phenolic antioxidants productivity than U. isabellina. The maximum concentrations for ß-carotene (433.11 µg/g DW of pomace-SSF with A. elegans and 237.68 µg/g DW of pomace-SSF with U. isabellina), lutein (374.48 µg/g DW- A. elegans and 179.04 µg/g DW- U. isabellina) and zeaxanthin (247.35 µg/g DW- A. elegans and 120.41 µg/g DW- U. isabellina) were registered on the 12th day of SSFs. In the case of SSF with A. elegans, the amount of total phenolics increased significantly (27%) by day 4 from the initial value (2670.38 µg of gallic acid equivalents/g DW) before slowly decreasing for the remaining period of the fungal growth. The experimental findings showed that a prolonged fermentation (between 8 and 12 days) should be applied to obtain value-added apple pomaces (rich in GLA and carotenoids) with potential pharmaceutical and functional food applications. Moreover, the SSF processes of simultaneous bioaccumulation of valuable fatty acids, carotenoids and phenolic antioxidants proposed in the present study may open up new challenges for biotechnological production of industrially important biomolecules using abundant and unexploited apple pomaces.


Subject(s)
Antioxidants , Malus , Antioxidants/metabolism , Malus/metabolism , gamma-Linolenic Acid , Fermentation , Biofortification , Carotenoids , Phenols
2.
Foods ; 12(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37174421

ABSTRACT

One significant food group that is part of our daily diet is the dairy group, and both research and industry are actively involved to meet the increasing requirement for plant-based dairy alternatives (PBDAs). The production tendency of PBDAs is growing with a predictable rate of over 18.5% in 2023 from 7.4% at the moment. A multitude of sources can be used for development such as cereals, pseudocereals, legumes, nuts, and seeds to obtain food products such as vegetal milk, cheese, cream, yogurt, butter, and different sweets, such as ice cream, which have nearly similar nutritional profiles to those of animal-origin products. Increased interest in PBDAs is manifested in groups with special dietary needs (e.g., lactose intolerant individuals, pregnant women, newborns, and the elderly) or with pathologies such as metabolic syndromes, dermatological diseases, and arthritis. In spite of the vast range of production perspectives, certain industrial challenges arise during development, such as processing and preservation technologies. This paper aims at providing an overview of the currently available PBDAs based on recent studies selected from the electronic databases PubMed, Web of Science Core Collection, and Scopus. We found 148 publications regarding PBDAs in correlation with their nutritional and technological aspects, together with the implications in terms of health. Therefore, this review focuses on the relationship between plant-based alternatives for dairy products and the human diet, from the raw material to the final products, including the industrial processes and health-related concerns.

3.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499484

ABSTRACT

Novel and natural molecules for pharmaceutical applications are a contemporary preoccupation in science which prompts research in underexplored environments. Astragalus exscapus ssp. transsilvanicus (Schur) Nyár. (ASTRA) is a plant species endemic to Transylvania, having a very similar root system with that of A. membranaceus (Fisch.) Bunge, known for its health promoting properties. The present study endeavored to perform basic characterization of the ASTRA roots by proximate analysis, to investigate the fatty acid profile of the lipids extracted from the ASTRA roots, to examine the phenolic composition of the root extracts by liquid chromatography, and to evaluate the biological activities through determination of the antioxidant, antimicrobial and cytotoxic capacities of the extracts. The primary compounds found in the ASTRA roots were carbohydrates and lipids, and the fatty acid composition determined by GC-MS showed linoleic acid as preponderant compound with 31.10%, followed by palmitic, oleic and α-linolenic acids with 17.30%, 15.61% and 14.21%, respectively. The methanol extract of the ASTRA roots presented highest phenolic content, Astragaloside IV being the predominant compound with 425.32 ± 0.06 µg/g DW. The antimicrobial assay showed remarkable antimicrobial potential of the extract at a concentration of 0.356 and 0.703 mg ASTRA root powder (DW)/mL, highlighting its efficacy to inhibit S. aureus and S. epidermidis bacterial strains. Furthermore, the cell proliferation assessment showed the noteworthy proficiency of the treatment in inhibiting the proliferation of B16F10 melanoma cells.


Subject(s)
Anti-Infective Agents , Plant Extracts , Plant Extracts/chemistry , Staphylococcus aureus , Phenols/pharmacology , Phenols/analysis , Antioxidants/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Fatty Acids/analysis , Plant Roots
4.
Antioxidants (Basel) ; 11(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36358531

ABSTRACT

Current research focuses on improving the bioaccessibility of functional components bound to cereal bran cell walls. The main bioactive components in cereal bran that have major biological activities include phenolic acids, biopeptides, dietary fiber, and novel carbohydrates. Because of the bound form in which these bioactive compounds exist in the bran matrix, their bioaccessibility is limited. This paper aims to comprehensively analyze the functionality of an integrated technology comprising pretreatment techniques applied to bran substrate followed by fermentation bioprocesses to improve the bioaccessibility and bioavailability of the functional components. The integrated technology of specific physical, chemical, and biological pretreatments coupled with fermentation strategies applied to cereal bran previously-pretreated substrate provide a theoretical basis for the high-value utilization of cereal bran and the development of related functional foods and drugs.

5.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886867

ABSTRACT

In recent years, there has been considerable interest in icariin (ICA) and its derivates, icariside II (ICS) and icaritin (ICT), due to their wide range of potential applications in preventing cancer, cardiovascular disease, osteoporosis, delaying the effects of Alzheimer's disease, treating erectile dysfunction, etc. However, their poor water solubility and membrane permeability, resulting in low bioavailability, dampens their potential beneficial effects. In this regard, several strategies have been developed, such as pharmaceutical technologies, structural transformations, and absorption enhancers. All these strategies manage to improve the bioavailability of the above-mentioned flavonoids, thus increasing their concentration in the desired places. This paper focuses on gathering the latest knowledge on strategies to improve bioavailability for enhancing the efficacy of icariin, icariside II, and icaritin. We conclude that there is an opportunity for many further improvements in this field. To the best of our knowledge, no such review articles scoping the bioavailability improvement of icariin and its derivates have been published to date. Therefore, this paper can be a good starting point for all those who want to deepen their understanding of the field.


Subject(s)
Flavonoids , Biological Availability , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Male
6.
Molecules ; 27(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35335349

ABSTRACT

Apple industrial by-products are a promising source of bioactive compounds with direct implications on human health. The main goal of the present work was to characterize the Jonathan and Golden Delicious by-products from their fatty acid, amino acid, and volatile aroma compounds' point of view. GC-MS (gas chromatography-mass spectrometry) and ITEX/GC-MS methods were used for the by-products characterization. Linoleic and oleic were the main fatty acids identified in all samples, while palmitic and stearic acid were the representant of saturated ones. With respect to amino acids, from the essential group, isoleucine was the majority compound identified in JS (Jonathan skin) and GS (Golden skin) samples, lysine was the representant of JP (Jonathan pomace), and valine was mainly identified in GP (Golden pomace). A total number of 47 aroma volatile compounds were quantified in all samples, from which the esters groups ranged from 41.55-53.29%, aldehydes 29.75-43.99%, alcohols from 4.15 to 6.37%, ketones 4.14-5.72%, and the terpenes and terpenoids group reached values between 2.27% and 4.61%. Moreover, the by-products were valorized in biscuits manufacturing, highlighting their importance in enhancing the volatile aroma compounds, color, and sensorial analysis of the final baked goods.


Subject(s)
Malus , Volatile Organic Compounds , Amino Acids , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Volatile Organic Compounds/analysis
7.
Foods ; 10(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34574122

ABSTRACT

Beef aging is one of the most common methods used for improving its qualities. The main goal of the present study was to analyse the influence of different cold pressed oils and aromatic herbs during marination process on the nutritional, textural, and sensory attributes of the final grilled sirloin samples. In order to fulfil this goal, methods like GC-MS, HPLC/DAD/ESI-MS, HLPC-RID were performed to quantify fatty acids, phenolic acids, and organic acids, respectively. Textural and sensory analysis were performed with CT 3 Texture Analyser and hedonic test. The results showed high improvement of the meat grilled samples regarding the content of phenolic acids, and textural and sensory characteristics. Pearson values indicate strong positive correlations between raw and grilled samples regarding their content in phenolic acids. Hardness, chewiness, gumminess decreased during marination, meanwhile, resilience, and cohesiveness increased. Sensory analysis highlighted that meat samples marinated with olive oil and rosemary for 120 h reached the highest hedonic score among the tested samples.

8.
Food Sci Nutr ; 9(4): 1896-1906, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33841808

ABSTRACT

The bioaccessibility of the major carotenoids present in two commercial microalgal supplements in powder form was investigated through a standardized in vitro digestion method. The dried biomass of Arthrospira platensis contained ß-carotene (36.8 mg/100 g) and zeaxanthin (20.8 mg/100 g) as the main carotenoids as well as a high content of saturated fatty acids (61% of total fatty acids), whereas that of Chlorella pyrenoidosa was rich in lutein (37.8 mg/100 g) and had a high level of unsaturated fatty acids (65% of total fatty acids). In the case of the latter, lutein bioaccessibility was not statistically enhanced after the replacement of porcine bile extract with bovine bile extract in the in vitro digestion protocol and after the addition of coconut oil (17.8% as against to 19.2% and 19.2% vs. 18.5%, respectively). In contrast, the use of bovine bile extract along with co-digestion with coconut oil significantly enhanced the bioaccessibility of zeaxanthin from A. platensis, reaching the highest bioaccessibility of 42.8%.

9.
Polymers (Basel) ; 13(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801341

ABSTRACT

Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.

10.
Foods ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430280

ABSTRACT

The circular economy action plan involves principles related to food waste reduction and integration of recovered nutrients to the market. In this context, the present study aims to highlight the valuable bioactive components found in tomato processing by-products (carotenoids, phenolic compounds and fatty acids) influenced by industrial pre-treatments, particularly cold break (CB) process at 65-75 °C and hot break (HB) process at 85-95 °C. The fatty acid profile of the tomato seed oil was examined by gas chromatography coupled to mass spectrometry (GC-MS), individual carotenoid and phenolic compositions were determined by high performance liquid chromatography (HPLC) and the viscoelastic properties were evaluated by rheological measurements. The physicochemical properties revealed appropriate characteristics of the tomato seed oil to fit the standards of generally accepted edible oils, for both CB and HB derived samples, however, significant qualitative and quantitative differences were detected in their phenolic composition and carotenoids content. Lycopene (37.43 ± 1.01 mg/100 mL) was a major carotenoid in the examined samples, linoleic acid was the main fatty acid (61.73%) detected in the tomato seed oil and syringic acid appeared to be one of two major phenolic acids detected in the samples of CB process. Our findings extend the boundaries of tomato processing industry by validating that tomato seed oil is a bioactive rich edible oil with additional health benefits, which can be integrated in functional food products.

11.
Molecules ; 25(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126733

ABSTRACT

Lavender flowers were used in this study as a source of phytochemicals as naturally occurring antioxidants. Two different extraction techniques were applied, such as ultrasound-assisted (UAE) and supercritical fluids (SCE) methods. The comparative evaluation of the phytochemicals profile evidenced a higher content of chlorophyll a and b of 5.22 ± 0.12 mg/g dry weight (D.W.) and 2.95 ± 0.16 mg/g D.W, whereas the carotenoids content was 18.24 ± 0.04 mg/g D.W. in the SCE extract. Seven main compounds were found in both extracts: ß-linalool, eucalyptol, linalool acetate, ß-trans-ocimene, and limonene in SCE and linalool acetate, ß-linalool, 6-methyl-2-(2-oxiranyl)-5-hepten-2-ol, linalool oxide, lavandulyl acetate and camphor in UAE. The (n-3) acids had a higher contribution in SCE. The extracts were microencapsulated in different combinations of wall materials based on polysaccharides and milk proteins. The four variants showed different phytochemical and morphological profiles, with a better encapsulating efficiency for proteins (up to 98%), but with a higher content of encapsulated carotenoids for polysaccharides, the latter showing remarkable antimicrobial activity against selected microorganisms. Carboxymethyl cellulose and whey proteins led to a double encapsulation of lipophilic compounds. The powders were tested in two food matrices as ingredients, with multiple targeted functions, such as flavoring, antimicrobial, antioxidant activity that can successfully replace synthetic additives.


Subject(s)
Food , Lavandula/chemistry , Phytochemicals/pharmacology , Capsules , Flowers/chemistry , Phytochemicals/chemistry
12.
Antioxidants (Basel) ; 9(7)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32605017

ABSTRACT

Lipophilic constituents are important for the color and aroma of apricots, but also for their health benefits. In the present study, carotenoids, fatty acids, and volatiles were analyzed in 11 apricot cultivars, from which nine were obtained in Romania. High performance liquid chromatography coupled to a diode array detector with atmospheric pressure chemical ionization and mass spectrometry (HPLC-DAD-APCI-MS methodology applied on unsaponified carotenoid extracts allowed the identification and quantification of 19 compounds. The predominant carotenoids in all cultivars were all-trans-ß-carotene and its cis isomers. Lutein was present exclusively in non-esterified form, while ß-cryptoxanthin was predominantly esterified, mainly with oleic, palmitic, lauric, and stearic acid. Moreover, ß-cryptoxanthin linoleate, linolenate, and stearate were detected for the first time in Harogem cultivar. Variation in carotenoid content and composition was observed, with the highest carotenoid content being recorded in Tudor, Harogem, and Mamaia cultivars. The predominant fatty acids determined by gas chromatography-mass spectrometry (GC-MS) were linoleic (up to 47%), palmitic (up to 32.7%), and linolenic (up to 17.16%), with small variations among cultivars. In-tube extraction technique (ITEX)/GC-MS was applied for profiling the volatiles in apricot fruits and 120 compounds were identified, with terpenoids and esters as the most abundant classes. Principal component analysis (PCA) revealed that the carotenoids and the fatty acids profile can be used for variety authentication and discrimination in apricots.

13.
Food Chem ; 310: 125927, 2020 Apr 25.
Article in English | MEDLINE | ID: mdl-31835232

ABSTRACT

Two filamentous fungi (Actinomucor elegans and Umbelopsis isabellina), were tested for their ability to enrich white grape pomace simultaneously with both γ-linolenic acid (GLA) and carotenoids through solid-state fermentation (SSF) processes. U. isabellina presented higher ability to produce GLA-rich lipids (composed mainly of neutral fractions) than A. elegans (the 6-th day of SSF: 378.85 mg/100 g of pomace -U. isabellina and 193.36 mg/100 g of pomace- A. elegans). The amounts of ß-carotene and lutein for both SSFs gradually increased until the end of the fermentation processes. The effect of fermentation time on the phenolic content and antioxidant activity of grape pomace was also studied. The SSF with A. elegans increased significantly total phenolic and flavonoid contents and DPPH scavenging activity of grape popmace. These bioprocessed grape pomaces with significant amounts of carotenoids and GLA-rich lipids (>94% nutritionally-valuable polyunsaturated fatty acids at the sn-2 position) could be very attractive for food industry.


Subject(s)
Antioxidants/chemistry , Carotenoids/chemistry , Food Handling/methods , Fungi, Unclassified/metabolism , Vitis/chemistry , gamma-Linolenic Acid/chemistry , Antioxidants/metabolism , Carotenoids/metabolism , Fermentation , Flavonoids/metabolism , Lipids/analysis , Lipids/chemistry , Phenols/analysis , Phenols/metabolism , beta Carotene/metabolism , gamma-Linolenic Acid/metabolism
14.
Microorganisms ; 7(8)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426397

ABSTRACT

Used kitchen oil represents a feasible and renewable biomass to produce green biofuels such as biodiesel. Biodiesel production generates large amounts of by-products such as the crude glycerol fraction, which can be further used biotechnologically as a valuable nutrient for many microorganisms. In this study, we transesterified used kitchen oil with methanol and sodium hydroxide in order to obtain biodiesel and crude glycerol fractions. The crude glycerol fraction consisting of 30% glycerol was integrated into a bioreactor cultivation process as a nutrient source for the growth of Candida zeylanoides ATCC 20367. Cell viability and biomass production were similar to those obtained with batch cultivations on pure glycerol or glucose as the main nutrient substrates. However, the biosynthesis of organic acids (e.g., citric and succinic) was significantly different compared to pure glycerol and glucose used as main carbon sources.

15.
Nutrients ; 12(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892138

ABSTRACT

Sea buckthorn oil, derived from the fruits of the shrub, also termed seaberry or sandthorn, is without doubt a strikingly rich source of carotenoids, in particular zeaxanthin and ß-carotene. In the present study, sea buckthorn oil and an oil-in-water emulsion were subjected to a simulated gastro-intestinal in vitro digestion, with the main focus on xanthophyll bioaccessibility. Zeaxanthin mono- and di-esters were the predominant carotenoids in sea buckthorn oil, with zeaxanthin dipalmitate as the major compound (38.0%). A typical fatty acid profile was found, with palmitic (49.4%), palmitoleic (28.0%), and oleic (11.7%) acids as the dominant fatty acids. Taking into account the high amount of carotenoid esters present in sea buckthorn oil, the use of cholesterol esterase was included in the in vitro digestion protocol. Total carotenoid bioaccessibility was higher for the oil-in-water emulsion (22.5%) compared to sea buckthorn oil (18.0%) and even higher upon the addition of cholesterol esterase (28.0% and 21.2%, respectively). In the case of sea buckthorn oil, of all the free carotenoids, zeaxanthin had the highest bioaccessibility (61.5%), followed by lutein (48.9%), making sea buckthorn oil a potential attractive source of bioaccessible xanthophylls.


Subject(s)
Hippophae/chemistry , Plant Oils/chemistry , Xanthophylls/pharmacokinetics , Biological Availability , Digestion , Emulsions/chemistry , Fatty Acids/analysis , Fruit/chemistry , Gastric Juice/enzymology , Humans , Intestine, Small/enzymology , Lutein/pharmacokinetics , Sterol Esterase/metabolism , Xanthophylls/analysis , Zeaxanthins/pharmacokinetics , beta Carotene/pharmacokinetics
16.
Molecules ; 23(12)2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30544917

ABSTRACT

This study aimed to determine the chemical composition, fatty acids, volatile profile and phenolic compounds profiles from five wild edible mushrooms (Agaricus bisporus, Pleurotus ostreatus, Cantharellus cibarius, Boletus edulis, Lactarius piperatus) from Romania. The results indicated that the dried fruiting bodies of selected mushrooms were rich in proteins (36.24 g/100 g dw-Boletus edulis) and carbohydrates (62.45 g/100 g dw-Lactarius piperatus). 4-Hydroxybenzoic acid and cinnamic acid, were the main phenolic compound present in all selected species. Additionally, the fatty acid pattern included polyunsaturated acids in more than 60% of all fatty acids followed by monounsaturated fatty acids (30%). For the studied mushroom samples, the main volatile compounds identified by the gas chromatography-mass spectrometry were hexanal, benzaldehyde and dodecanoic acid. According to the obtained results, the fruiting bodies of selected Romanian mushrooms are a rich source of bioactive molecules indicating that they may be further exploited as functional ingredients in the composition of innovative food products.


Subject(s)
Agaricales/chemistry , Fatty Acids/analysis , Phenols/analysis , Volatile Organic Compounds/analysis , Food Analysis , Fungal Proteins/analysis , Gas Chromatography-Mass Spectrometry , Nutritive Value , Pleurotus/chemistry , Romania
17.
Int J Mol Sci ; 18(12)2017 11 24.
Article in English | MEDLINE | ID: mdl-29186761

ABSTRACT

Probiotics are bacteria that can provide health benefits to consumers and are suitable to be added to a variety of foods. In this research, viability of immobilized Lactobacillus casei in alginate with or without sea buckthorn lipid extract were studied during heat treatment and with an in vitro gastrointestinal model. The characterization of the lipid extract was also done using the UV-Vis spectrometry (UV-Vis), high-performance liquid chromatography photodiode array detection method (HPLC-PDA), gas chromatography coupled with mass spectrometry (GS-MS) and Cryo scanning electron microscopy (Cryo-SEM). During heat treatment, the entrapped probiotic cells proved high viability (>6 CFU log/g), even at temperatures above 50 °C. The rich in monounsaturated fatty acids sea buckthorn fraction improved the in vitro digestion passage regarding the probiotic viability. The survival of the probiotic cells was 15% higher after 2 h in the acidic medium of the simulated gastric fluid in the sample where L. casei was encapsulated with the sea buckthorn extract compared with the samples where no extract was added. Thus, this approach may be effective for the future development of probiotic-supplemented foods as foods with health welfare for the consumers.


Subject(s)
Hippophae/chemistry , Lacticaseibacillus casei/drug effects , Plant Extracts/pharmacology , Cell Survival , Gastric Juice/microbiology , Plant Extracts/chemistry , Probiotics
18.
Chem Cent J ; 11(1): 92, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-29086904

ABSTRACT

BACKGROUND: The use of agricultural and food by-products is an economical solution to industrial biotechnology. The apricot press residues are abounding by-products from juice industry which can be used as substrates in solid state fermentation process (SSF), thus allowing a liberation and increase of content from various biomolecules with high added value. METHODS: The evolutions of phenolic levels (by colorimetric assays and high performance liquid chromatography, HPLC-MS) and antioxidant activities (by DPPH assay) during SSF of apricot pomaces with Aspergillus niger and Rhizopus oligosporus were investigated. The changes in fatty acid compositions of oils in apricot kernels during SSFs were also analyzed by gas chromatography (GC-MS). RESULTS: The results showed that the levels of total phenolics increased by over 70% for SSF with R. oligosporus and by more than 30% for SSF with A. niger. A similar trend was observed in the amounts of total flavonoids (increases of 38, and 12% were recorded for SSF by R. oligosporus and A. niger, respectively). Free radical scavenging capacities of methanolic extracts were also significantly enhanced. The main phenolic compounds identified through HPLC-MS in fermented apricot press residues were chlorogenic acid, neochlorogenic acid, rutin, and quercetin 3-acetyl- glucoside. This work also demonstrated that the SSF with filamentous fungal strains not only helped in higher lipid recovery from apricot kernels, but also resulted in oils with better quality attributes (high linoleic acid content). CONCLUSION: The utilization of apricot by-products resulting from the juice industry as waste could provide an extra income and at the same time can help in solving solid waste management problems Graphical abstract Changes in phenolic compositions, antioxidant activities and total lipid contents during solid state fermentation (SSF) of apricot pomaces from juice industry with Aspergillus niger and Rhizopus oligosporus.

19.
Food Chem ; 231: 131-140, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28449989

ABSTRACT

The purpose of the research was to identify the bioactive compounds and to evaluate the antioxidant, antimutagenic and antimicrobial activities of the major Romanian agro-industrial wastes (apple peels, carrot pulp, white- and red-grape peels and red-beet peels and pulp) for the purpose of increasing the wastes' value. Each type of waste material was analyzed without (fresh) and with thermal processing (10min, 80°C). Based on the obtained results, the thermal process enhanced the total phenolic content. The highest antioxidant activity was exhibited by thermally processed red-grape waste followed by thermally processed red-beet waste. Linoleic acid was the major fatty acid in all analyzed samples, but its content decreased significantly during thermal processing. The carrot extracts have no antimicrobial effects, while the thermally processed red-grape waste has the highest antimicrobial effect against the studied strains. The thermally processed red-grape sample has the highest antimutagenic activity toward S. typhimurium TA98 and TA100.


Subject(s)
Antioxidants , Industrial Waste , Agriculture , Anti-Infective Agents , Fruit , Phenols , Plant Extracts , Vegetables
20.
Food Chem ; 209: 27-36, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27173530

ABSTRACT

Evolutions of phenolic contents and antioxidant activities during solid-state fermentation (SSF) of plum pomaces (from the juice industry) and brandy distillery wastes with Aspergillus niger and Rhizopus oligosporus were investigated. The effect of fermentation time on the oil content and major lipid classes in the plum kernels was also studied. Results showed that total phenolic (TP) amounts increased by over 30% for SSF with Rhizopus oligosporus and by >21% for SSF with A. niger. The total flavonoid contents presented similar tendencies to those of the TPs. The free radical scavenging activities of methanolic extracts were also significantly enhanced. The HPLC-MS analysis showed that quercetin-3-glucoside was the major phenolic compound in both fermented plum by-products. The results also demonstrated that SSF not only helped to achieve higher lipid recovery from plum kernels, but also resulted in oils with better quality attributes (high sterol ester and n-3 PUFA-rich polar lipid contents).


Subject(s)
Antioxidants/analysis , Aspergillus niger/metabolism , Flavonoids/analysis , Fruit/chemistry , Phenols/analysis , Plant Extracts/analysis , Prunus domestica/chemistry , Rhizopus/metabolism , Aspergillus niger/growth & development , Fatty Acids, Omega-3 , Fermentation , Fruit/metabolism , Fruit/microbiology , Lipids/analysis , Oxidation-Reduction , Plant Oils/analysis , Prunus domestica/metabolism , Prunus domestica/microbiology , Rhizopus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...