Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 13: 836217, 2022.
Article in English | MEDLINE | ID: mdl-36186864

ABSTRACT

Human epidemiological data links maternal immune activation (MIA) during gestation with increased risk for psychiatric disorders with a putative neurodevelopmental origin, including schizophrenia and autism. Animal models of MIA provide evidence for this association and suggest that inflammatory cytokines represent one critical link between maternal infection and any potential impact on offspring brain and behavior development. However, to what extent specific cytokines are necessary and sufficient for these effects remains unclear. It is also unclear how specific cytokines may impact the development of specific cell types. Using a human cellular model, we recently demonstrated that acute exposure to interferon-γ (IFNγ) recapitulates molecular and cellular phenotypes associated with neurodevelopmental disorders. Here, we extend this work to test whether IFNγ can impact the development of immature glutamatergic neurons using an induced neuronal cellular system. We find that acute exposure to IFNγ activates a signal transducer and activator of transcription 1 (STAT1)-pathway in immature neurons, and results in significantly increased major histocompatibility complex I (MHCI) expression at the mRNA and protein level. Furthermore, acute IFNγ exposure decreased synapsin I/II protein in neurons but did not affect the expression of synaptic genes. Interestingly, complement component 4A (C4A) gene expression was significantly increased following acute IFNγ exposure. This study builds on our previous work by showing that IFNγ-mediated disruption of relevant synaptic proteins can occur at early stages of neuronal development, potentially contributing to neurodevelopmental disorder phenotypes.

2.
Brain Behav Immun ; 105: 82-97, 2022 10.
Article in English | MEDLINE | ID: mdl-35716830

ABSTRACT

Maternal immune activation (MIA) during prenatal development is an environmental risk factor for psychiatric disorders including schizophrenia (SZ). Converging lines of evidence from human and animal model studies suggest that elevated cytokine levels in the maternal and fetal compartments are an important indication of the mechanisms driving this association. However, there is variability in susceptibility to the psychiatric risk conferred by MIA, likely influenced by genetic factors. How MIA interacts with a genetic profile susceptible to SZ is challenging to test in animal models. To address this gap, we examined whether differential gene expression responses occur in forebrain-lineage neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSC) generated from three individuals with a diagnosis of schizophrenia and three healthy controls. Following acute (24 h) treatment with either interferon-gamma (IFNγ; 25 ng/µl) or interleukin (IL)-1ß (10 ng/µl), we identified, by RNA sequencing, 3380 differentially expressed genes (DEGs) in the IFNγ-treated control lines (compared to untreated controls), and 1980 DEGs in IFNγ-treated SZ lines (compared to untreated SZ lines). Out of 4137 genes that responded significantly to IFNγ across all lines, 1223 were common to both SZ and control lines. The 2914 genes that appeared to respond differentially to IFNγ treatment in SZ lines were subjected to a further test of significance (multiple testing correction applied to the interaction effect between IFNγ treatment and SZ diagnosis), yielding 359 genes that passed the significance threshold. There were no differentially expressed genes in the IL-1ß-treatment conditions after Benjamini-Hochberg correction. Gene set enrichment analysis however showed that IL-1ß impacts immune function and neuronal differentiation. Overall, our data suggest that a) SZ NPCs show an attenuated transcriptional response to IFNγ treatment compared to controls; b) Due to low IL-1ß receptor expression in NPCs, NPC cultures appear to be less responsive to IL-1ß than IFNγ; and c) the genes differentially regulated in SZ lines - in the face of a cytokine challenge - are primarily associated with mitochondrial, "loss-of-function", pre- and post-synaptic gene sets. Our findings particularly highlight the role of early synaptic development in the association between maternal immune activation and schizophrenia risk.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Schizophrenia , Animals , Cytokines/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Pregnancy , Prosencephalon , Schizophrenia/genetics , Schizophrenia/metabolism
3.
J Neuroendocrinol ; 32(10): e12904, 2020 10.
Article in English | MEDLINE | ID: mdl-33000549

ABSTRACT

Neural progestin receptors (PR) function in reproduction, neural development, neuroprotection, learning, memory and the anxiety response. In the absence of progestins, PR can be activated by dopamine (DA) in the rodent hypothalamus to elicit female sexual behaviour. The present study investigated mechanisms of DA activation of PR by testing the hypothesis that proteins from DA-treated hypothalami interact with PR in the absence of progestins. Ovariectomised, oestradiol-primed mice were infused with a D1-receptor agonist, SKF38393 (SKF), into the third ventricle 30 minutes prior to death. Proteins from SKF-treated hypothalami were pulled-down with glutathione S-transferase-tagged mouse PR-A or PR-B and the interactomes were analysed by mass spectrometry. The largest functional group to interact with PR-A in a DA-dependent manner was synaptic proteins. To test the hypothesis that DA activation of PR regulates synaptic proteins, we developed oestradiol-induced PR-expressing hypothalamic-like neurones derived from human-induced pluripotent stem cells (hiPSCs). Similar to progesterone (P4), SKF treatment of hiPSCs increased synapsin1/2 expression. This SKF-dependent effect was blocked by the PR antagonist RU486, suggesting that PR are necessary for this DA-induced increase. The second largest DA-dependent PR-A protein interactome comprised metabolic regulators involved in glucose metabolism, lipid synthesis and mitochondrial energy production. Interestingly, hypothalamic proteins interacted with PR-A, but not PR-B, in an SKF-dependent manner, suggesting that DA promotes the interaction of multiple hypothalamic proteins with PR-A. These in vivo and in vitro results indicate novel mechanisms by which DA can differentially activate PR isoforms in the absence of P4 and provide a better understanding of ligand-independent PR activation in reproductive, metabolic and mental health disorders in women.


Subject(s)
Dopamine/pharmacology , Nerve Tissue Proteins/metabolism , Receptors, Progesterone/metabolism , Animals , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Progesterone/pharmacology , Protein Binding/drug effects , Protein Isoforms/drug effects , Protein Isoforms/metabolism , Receptors, Progesterone/drug effects , Signal Transduction/drug effects
4.
F1000Res ; 9: 353, 2020.
Article in English | MEDLINE | ID: mdl-32685135

ABSTRACT

Apolipoprotein E (APOE) is a multifunctional protein that plays significant roles in important cellular mechanisms in peripheral tissues and is as well expressed in the central nervous system, notably by adult neural stem cells (NSCs) in the hippocampus. Evidence from animal studies suggest that APOE is critical for adult NSC maintenance. However, whether APOE has the potential to play a similar role in human NSCs has not been directly investigated. To address this question, we conducted a focused study characterising APOE gene and protein expression in an in vitro model of neural differentiation utilising human induced pluripotent stem cells. We found that APOE gene expression was dramatically decreased as the cells became more differentiated, indicating that APOE expression levels reflect the degree of cellular differentiation during neural induction. Furthermore, qualitative analysis results of immunocytochemistry showed that intracellular localisation of APOE protein becomes more pronounced as neural differentiation progresses. Taken together, our findings suggest a potential role for APOE in human NSC maintenance and justify further investigations being carried out to understand whether changes in APOE levels can directly impact the neurogenic capacity of human stem cells.


Subject(s)
Apolipoproteins E/genetics , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Cells, Cultured , Gene Expression Regulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...