Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Int J Infect Dis ; : 107236, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245314

ABSTRACT

OBJECTIVES: When malaria vectors consume ivermectin in a blood meal, their survival probability decreases, potentially reducing malaria transmission during mass drug administrations (MDA). However, questions remain regarding the optimal dosing. This study aimed at comparing the mosquitocidal effect and pharmacokinetics of two dose regimens of ivermectin for malaria vector control. DESIGN: We conducted an open-label randomized control trial in Kenya staggered in blocks with sequential intervention groups and parallel controls. Participants were randomly assigned (2:1:1:1) using computer random sequence generation, unstratified, with one block of six pharmacokinetic only participants (single-dose ivermectin) and six blocks of four participants (3:1 intervention vs control), to receive single-dose ivermectin (400 mcg/kg, n=12), three daily doses (three-day regimen 300 mcg/kg, n=6), albendazole (400 mg, n=6), or no treatment (negative control, n=6).Our primary outcome was Anopheles gambiae survival (time-to-event (days)) post blood feeding up to 10-days after drug administration. We also evaluated pharmacokinetics (Cmax, AUC, Tmax, Thalf) up to 7 days post treatment. RESULTS: A total of 36 healthy volunteers aged 21-32 years were recruited into the study and followed up to completion with 2 participants not attending visit on day 28. All drug regimens were well tolerated. Both regimens showed significant mosquitocidal effect in the first 7 days. At 10-days post treatment single dose presented superior longevity of effect (aHR(adjusted hazard ratio)=3.91; 95% CI=1.93- 7.93; p<0.001) compared to triple dose (aHR=1.79; 95% CI=0.88-3.62; p=0.0.11). Albendazole had overall no mosquitocidal effect. CONCLUSIONS: It is unclear why a single dose led to increased bio-efficacy compared to triple dose. We recommend trials investigating ivermectin MDA for malaria control to consider single-dose ivermectin. A single-dose regimen is also expected to present additional operational advantages compared to a three-day regimen leading to improved programmatic suitability.

2.
Eur J Pharm Sci ; 202: 106885, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39182854

ABSTRACT

Phenotyping serves to estimate enzyme activities in healthy persons and patients in vivo. Low doses of enzyme-specific substrates are administered, and activities estimated using metabolic ratios (MR, calculated as AUCmetabolite/AUCparent). We administered the Basel phenotyping cocktail containing caffeine (CYP1A2 substrate), efavirenz (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6) and midazolam (CYP3A) to 36 patients with liver cirrhosis and 12 control subjects and determined free and total plasma concentrations over 24 h. Aims were to assess whether MRs reflect CYP activities in patients with liver cirrhosis and whether MRs calculated with free plasma concentrations (MRfree) provide better estimates than with total concentrations (MRtotal). The correlation of MRtotal with MRfree was excellent (R2 >0.910) for substrates with low (<30 %, caffeine and metoprolol) and intermediate protein binding (≥30 and <99 %, midazolam and omeprazole) but weak (R2 <0.30) for substrates with high protein binding (≥99 %, efavirenz and flurbiprofen). The correlations between MRtotal and MRfree with CYP activities were good (R2 >0.820) for CYP1A2, CYP2C19 and CYP2D6. CYP3A4 activity was reflected better by midazolam elimination than by midazolam MRtotal or MRfree. The correlation between MRtotal and MRfree with CYP activity was not significant or weak for CYP2B6 and CYP2C9. In conclusion, MRs of substrates with an extensive protein binding (>99 %) show high inter-patient variabilities and do not accurately reflect CYP activity in patients with liver cirrhosis. Protein binding of the probe drugs has a high impact on the precision of CYP activity estimates and probe drugs with low or intermediate protein binding should be preferred.


Subject(s)
Caffeine , Cyclopropanes , Flurbiprofen , Liver Cirrhosis , Metoprolol , Midazolam , Omeprazole , Phenotype , Protein Binding , Humans , Male , Flurbiprofen/pharmacokinetics , Flurbiprofen/blood , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Omeprazole/pharmacokinetics , Omeprazole/blood , Caffeine/pharmacokinetics , Caffeine/blood , Female , Midazolam/pharmacokinetics , Midazolam/blood , Middle Aged , Adult , Metoprolol/pharmacokinetics , Metoprolol/blood , Cyclopropanes/pharmacokinetics , Cyclopropanes/administration & dosage , Alkynes/pharmacokinetics , Benzoxazines/pharmacokinetics , Benzoxazines/blood , Cytochrome P-450 CYP2C9/metabolism , Aged , Cytochrome P-450 Enzyme System/metabolism , Healthy Volunteers , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP3A/metabolism , Young Adult
3.
Eur Neuropsychopharmacol ; 88: 43-48, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121715

ABSTRACT

The serotonin 2A (5-HT2A) receptor is an important target for drug development and the main receptor through which classical psychedelics elucidate their hallucinogenic effects. The 5-HT2A receptor antagonist ketanserin has frequently been used as a tool to block the receptor. Here, we establish the dose-occupancy relation of ketanserin and the cerebral 5-HT2A receptor in healthy participants by conducting a positron emission tomography (PET) study. 120-min PET scans using the 5-HT2A receptor agonist radiotracer [11C]Cimbi-36 were conducted at baseline and after oral doses of either 10, 20, or 40 mg of ketanserin; each participant underwent one or two scans after ketanserin administration. Occupancy was defined as the percent change in neocortex binding potential (BPND), estimated using the simplified reference tissue model (SRTM) with the cerebellum as reference region. Peroral ketanserin intake resulted in a plasma concentration-related increase in cerebral 5-HT2A receptor occupancy with the highest plasma ketanserin concentrations measured after ∼2 h. The relation between mean plasma ketanserin concentrations and 5-HT2A receptor occupancy conformed to a single-site binding model with an estimated EC50 (95 % CI) of 2.52 (0.75; 8.1) ng/mL, which corresponds to a peroral dose of ketanserin of approximately 10 mg. These data elucidate for the first time in humans the cerebral pharmacodynamics of ketanserin, both benefitting its use as a pharmacological tool for probing brain function and adding to its potential for therapeutic use in rescuing a bad psychedelic experience.

4.
Transl Psychiatry ; 14(1): 288, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009578

ABSTRACT

The repeated use of small doses of psychedelics (also referred to as "microdosing") to facilitate benefits in mental health, cognition, and mood is a trending practice. Placebo-controlled studies however have largely failed to demonstrate strong benefits, possibly because of large inter-individual response variability. The current study tested the hypothesis that effects of low doses of LSD on arousal, attention and memory depend on an individual's cognitive state at baseline. Healthy participants (N = 53) were randomly assigned to receive repeated doses of LSD (15 mcg) or placebo on 4 occasions divided over 2 weeks. Each treatment condition also consisted of a baseline and a 1-week follow-up visit. Neurophysiological measures of arousal (resting state EEG), pre-attentive processing (auditory oddball task), and perceptual learning and memory (visual long-term potentiation (LTP) paradigm) were assessed at baseline, dosing session 1 and 4, and follow-up. LSD produced stimulatory effects as reflected by a reduction in resting state EEG delta, theta, and alpha power, and enhanced pre-attentive processing during the acute dosing sessions. LSD also blunted the induction of LTP on dosing session 4. Stimulatory effects of LSD were strongest in individuals with low arousal and attention at baseline, while inhibitory effects were strongest in high memory performers at baseline. Decrements in delta EEG power and enhanced pre-attentive processing in the LSD treatment condition were still present during the 1-week follow-up. The current study demonstrates across three cognitive domains, that acute responses to low doses of LSD depend on the baseline state and provides some support for LSD induced neuroadaptations that sustain beyond treatment.


Subject(s)
Arousal , Attention , Electroencephalography , Hallucinogens , Lysergic Acid Diethylamide , Humans , Male , Female , Adult , Lysergic Acid Diethylamide/pharmacology , Lysergic Acid Diethylamide/administration & dosage , Young Adult , Arousal/drug effects , Arousal/physiology , Attention/drug effects , Hallucinogens/administration & dosage , Hallucinogens/pharmacology , Memory/drug effects , Long-Term Potentiation/drug effects , Brain/drug effects , Brain/physiology , Double-Blind Method , Cognition/drug effects , Individuality
5.
Front Pharmacol ; 15: 1391689, 2024.
Article in English | MEDLINE | ID: mdl-38741590

ABSTRACT

In vivo, psilocybin is rapidly dephosphorylated to psilocin which induces psychedelic effects by interacting with the 5-HT2A receptor. Psilocin primarily undergoes glucuronidation or conversion to 4-hydroxyindole-3-acetic acid (4-HIAA). Herein, we investigated psilocybin's metabolic pathways in vitro and in vivo, conducting a thorough analysis of the enzymes involved. Metabolism studies were performed using human liver microsomes (HLM), cytochrome P450 (CYP) enzymes, monoamine oxidase (MAO), and UDP-glucuronosyltransferase (UGT). In vivo, metabolism was examined using male C57BL/6J mice and human plasma samples. Approximately 29% of psilocin was metabolized by HLM, while recombinant CYP2D6 and CYP3A4 enzymes metabolized nearly 100% and 40% of psilocin, respectively. Notably, 4-HIAA and 4-hydroxytryptophol (4-HTP) were detected with HLM but not with recombinant CYPs. MAO-A transformed psilocin into minimal amounts of 4-HIAA and 4-HTP. 4-HTP was only present in vitro. Neither 4-HIAA nor 4-HTP showed relevant interactions at assessed 5-HT receptors. In contrast to in vivo data, UGT1A10 did not extensively metabolize psilocin in vitro. Furthermore, two putative metabolites were observed. N-methyl-4-hydroxytryptamine (norpsilocin) was identified in vitro (CYP2D6) and in mice, while an oxidized metabolite was detected in vitro (CYP2D6) and in humans. However, the CYP2D6 genotype did not influence psilocin plasma concentrations in the investigated study population. In conclusion, MAO-A, CYP2D6, and CYP3A4 are involved in psilocin's metabolism. The discovery of putative norpsilocin in mice and oxidized psilocin in humans further unravels psilocin's metabolism. Despite limitations in replicating phase II metabolism in vitro, these findings hold significance for studying drug-drug interactions and advancing research on psilocybin as a therapeutic agent.

6.
Phytomedicine ; 129: 155644, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761524

ABSTRACT

BACKGROUND: A global death toll of 608,000 in 2022 and emerging parasite resistance to artemisinin, the mainstay of antimalarial chemotherapy derived from the Chinese herb Artemisia annua, urge the development of novel antimalarials. A clinical trial has found high antimalarial potency for aqueous extracts of A. annua as well as its African counterpart Artemisia afra, which contains only trace amounts of artemisinin. The artemisinin-independent antimalarial activity of A. afra points to the existence of other antimalarials present in the plant. However, the publication was retracted due to ethical and methodological concerns in the trial, so the only evidence for antimalarial activity of A. afra is built on in vitro studies reporting efficacy only in the microgram per milliliter range. HYPOTHESIS: Our study aims to shed more light on the controversy around the antimalarial activity of A. afra by assessing its efficacy in mice. In particular, we are testing the hypothesis that A. afra contains a pro-drug that is inactive in vitro but active in vivo after metabolization by the mammalian host. METHODS: Plasmodium berghei-infected mice were treated once or thrice (on three consecutive days) with various doses of A. afra, A. annua, or pure artemisinin. RESULTS: Aqueous powder suspensions of A. annua but not A. afra showed antimalarial activity in mice. CONCLUSION: Our experiments conducted in mice do not support the pro-drug hypothesis.


Subject(s)
Antimalarials , Artemisia , Artemisinins , Malaria , Plant Extracts , Plasmodium berghei , Powders , Antimalarials/pharmacology , Animals , Artemisia/chemistry , Malaria/drug therapy , Plasmodium berghei/drug effects , Artemisinins/pharmacology , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Artemisia annua/chemistry , Suspensions , Male
7.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38696353

ABSTRACT

BACKGROUND: Transarterial chemoembolization is the first-line treatment for intermediate-stage HCC. However, the response rate to transarterial chemoembolization varies, and the molecular mechanisms underlying variable responses are poorly understood. Patient-derived hepatocellular carcinoma organoids (HCCOs) offer a novel platform to investigate the molecular mechanisms underlying doxorubicin resistance. METHODS: We evaluated the effects of hypoxia and doxorubicin on cell viability and cell cycle distribution in 20 patient-derived HCCO lines. The determinants of doxorubicin response were identified by comparing the transcriptomes of sensitive to resistant HCCOs. Candidate genes were validated by pharmacological inhibition. RESULTS: Hypoxia reduced the proliferation of HCCOs and increased the number of cells in the G0/G1 phase of the cell cycle, while decreasing the number in the S phase. The IC50s of the doxorubicin response varied widely, from 29nM to >1µM. Doxorubicin and hypoxia did not exhibit synergistic effects but were additive in some HCCOs. Doxorubicin reduced the number of cells in the G0/G1 and S phases and increased the number in the G2 phase under both normoxia and hypoxia. Genes related to drug metabolism and export, most notably ABCB1, were differentially expressed between doxorubicin-resistant and doxorubicin-sensitive HCCOs. Small molecule inhibition of ABCB1 increased intracellular doxorubicin levels and decreased drug tolerance in resistant HCCOs. CONCLUSIONS: The inhibitory effects of doxorubicin treatment and hypoxia on HCCO proliferation are variable, suggesting an important role of tumor-cell intrinsic properties in doxorubicin resistance. ABCB1 is a determinant of doxorubicin response in HCCOs. Combination treatment of doxorubicin and ABCB1 inhibition may increase the response rate to transarterial chemoembolization.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Carcinoma, Hepatocellular , Doxorubicin , Drug Resistance, Neoplasm , Liver Neoplasms , Organoids , Doxorubicin/pharmacology , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Organoids/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Cell Proliferation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chemoembolization, Therapeutic , Cell Cycle/drug effects
8.
Science ; 385(6704): eadk4898, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38781354

ABSTRACT

After infection of B cells, Epstein-Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates nicotinamide adenine dinucleotide (NAD) de novo biosynthesis by driving expression of the metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match adenosine triphosphate (ATP) production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is therefore a druggable metabolic vulnerability of EBV-driven B cell transformation, opening therapeutic possibilities for EBV-related diseases.


Subject(s)
Adenosine Triphosphate , B-Lymphocytes , Cell Transformation, Viral , Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Indoleamine-Pyrrole 2,3,-Dioxygenase , NAD , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Proliferation , Electron Transport Complex I/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Lymphoma/virology , NAD/metabolism , Viral Proteins , Viremia
9.
J Clin Pharmacol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813747

ABSTRACT

Ivermectin has been used since the 1980s as an anthelmintic and antiectoparasite agent worldwide. Currently, the only available oral formulation is tablets designed for adult patients. A patient-friendly orodispersible tablet formulation designed for pediatric use (CHILD-IVITAB) has been developed and is entering early phase clinical trials. To inform the pediatric program of CHILD-IVITAB, 16 healthy adults were enrolled in a phase I, single-center, open-label, randomized, 2-period, crossover, single-dose trial which aimed to compare palatability, tolerability, and bioavailability and pharmacokinetics of CHILD-IVITAB and their variability against the marketed ivermectin tablets (STROMECTOL) at a single dose of 12 mg in a fasting state. Palatability with CHILD-IVITAB was considerably enhanced as compared to STROMECTOL. Both ivermectin formulations were well tolerated and safe. Relative bioavailability of CHILD-IVITAB compared to STROMECTOL was estimated as the ratios of geometric means for Cmax, AUC 0-∞, and AUC0-last, which were 1.52 [90% CI: 1.13-2.04], 1.27 [0.99-1.62], and 1.29 [1.00-1.66], respectively. Maximum drug concentrations occurred earlier with the CHILD-IVITAB formulation, with a median Tmax at 3.0 h [range 2.0-4.0 h] versus 4.0 h [range 2.0-5.0 h] with STROMECTOL (P = .004). With CHILD-IVITAB, variability in exposure was cut in half (coefficient of variation: 37% vs 70%) compared to STROMECTOL. Consistent with a more controlled absorption process, CHILD-IVITAB was associated with reduced variability in drug exposure as compared to STROMECTOL. Together with a favorable palatability and tolerability profile, these findings motivate for further clinical studies to evaluate benefits of such a patient-friendly ODT formulation in pediatric patients with a parasitic disease, including infants and young children <15 kg.

10.
Article in English | MEDLINE | ID: mdl-38615429

ABSTRACT

3,4-Methylenedioxymethamphetamine (MDMA) is an entactogen with therapeutic potential. The two enantiomers of MDMA differ regarding their pharmacokinetics and pharmacodynamics but the chiral pharmacology of MDMA needs further study in clinical trials. Here, an achiral and an enantioselective high performance liquid chromatography-tandem mass spectrometry method for the quantification of MDMA and its psychoactive phase I metabolite 3,4-methylenedioxyamphetamine (MDA) in human plasma were developed and validated. The analytes were detected by positive electrospray ionization followed by multiple reaction monitoring. The calibration range was 0.5-500 ng/mL for the achiral analysis of both analytes, 0.5-1,000 ng/mL for chiral MDMA analysis, and 1-1,000 ng/mL for chiral MDA analysis. Accuracy, precision, selectivity, and sensitivity of both bioanalytical methods were in accordance with regulatory guidelines. Furthermore, accuracy and precision of the enantioselective method were maintained when racemic calibrations were used to measure quality control samples containing only one of the enantiomers. Likewise, enantiomeric calibrations could be used to reliably quantify enantiomers in racemic samples. The achiral and enantioselective methods were employed to assess pharmacokinetic parameters in clinical study participants treated with racemic MDMA or one of its enantiomers. The pharmacokinetic parameters assessed with both bioanalytical methods were comparable. In conclusion, the enantioselective method is useful for the simultaneous quantification of both enantiomers in subjects treated with racemic MDMA. However, as MDMA and MDA do not undergo chiral inversion, enantioselective separation is not necessary in subjects treated with only one of the enantiomers.


Subject(s)
N-Methyl-3,4-methylenedioxyamphetamine , Tandem Mass Spectrometry , Humans , N-Methyl-3,4-methylenedioxyamphetamine/blood , N-Methyl-3,4-methylenedioxyamphetamine/pharmacokinetics , N-Methyl-3,4-methylenedioxyamphetamine/chemistry , Stereoisomerism , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Linear Models , Limit of Detection , Male , Adult
11.
J Clin Pharmacol ; 64(7): 810-819, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38497339

ABSTRACT

Understanding pharmacokinetics (PK) in children is a prerequisite to determine optimal pediatric dosing. As plasma sampling in children is challenging, alternative PK sampling strategies are needed. In this case study we evaluated the suitability of saliva as alternative PK matrix to simplify studies in infants, investigating metamizole, an analgesic used off-label in infants. Six plasma and 6 saliva PK sample collections were scheduled after a single intravenous dose of 10 mg/kg metamizole. Plasma/saliva pharmacometric (PMX) modeling of the active metabolites 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA) was performed. Various reduced plasma sampling scenarios were evaluated by PMX simulations. Saliva and plasma samples from 25 children were included (age range, 5-70 months; weight range, 8.7-24.8 kg). Distribution of metamizole metabolites between plasma and saliva was without delay. Estimated mean (individual range) saliva/plasma fractions of 4-MAA and 4-AA were 0.32 (0.05-0.57) and 0.57 (0.25-0.70), respectively. Residual variability of 4-MAA (4-AA) in saliva was 47% (28%) versus 17% (11%) in plasma. A simplified sampling scenario with up to 6 saliva samples combined with 1 plasma sample was associated with similar PK parameter estimates as the full plasma sampling scenario. This case study with metamizole shows increased PK variability in saliva compared to plasma, compromising its suitability as single matrix for PK studies in infants. Nonetheless, rich saliva sampling can reduce the number of plasma samples required for PK characterization, thereby facilitating the conduct of PK studies to optimize dosing in pediatric patients.


Subject(s)
Dipyrone , Models, Biological , Saliva , Humans , Saliva/metabolism , Saliva/chemistry , Infant , Male , Dipyrone/pharmacokinetics , Dipyrone/administration & dosage , Child, Preschool , Female , Child , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Ampyrone/pharmacokinetics , Ampyrone/administration & dosage
12.
Article in English | MEDLINE | ID: mdl-38552595

ABSTRACT

Diamorphine, commonly known as heroin, is a semi-synthetic opioid analgesic. In the context of heroin-assisted treatment for opioid-dependent patients, diamorphine is mostly administered intravenously. However, recent attention has shifted towards intranasal administration as a better-tolerated alternative to the intravenous route. Here, we developed and validated a rapid bioanalytical method for the simultaneous quantification of diamorphine and its major metabolites 6-monoacetylmorphine, morphine, morphine-3-glucuronide, and morphine-6-glucuronide in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A straightforward protein precipitation extraction step was used for sample preparation. Chromatographic analyte separation was achieved using a Kinetex EVO C18 analytical column and a mobile phase gradient comprising an aqueous solution of ammonium hydrogen carbonate and methanol supplied with formic acid. Employing positive electrospray ionization and scheduled multiple reaction monitoring, we established a quantification range of 1-1,000 ng/mL for all analytes. Our validation results demonstrate a mean intra-assay accuracy of 91-106% and an intra-assay precision (CV) between 2 and 9% for all analytes and over three validation runs. The method exhibits a high extraction recovery (> 87%) and a negligible matrix effect (99-125%). Furthermore, no interferences with endogenous plasma compounds were detected. Lastly, we applied the method to assess the plasma concentrations of an opioid-dependent patient after the intranasal administration of diamorphine in a clinical study. In summary, we have successfully developed a rapid, highly reliable, and straightforward bioanalytical method for quantifying diamorphine and its metabolites in low amounts of clinical plasma samples.


Subject(s)
Heroin , Morphine , Humans , Heroin/metabolism , Chromatography, Liquid/methods , Analgesics, Opioid , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Morphine Derivatives , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
13.
Toxicol Lett ; 393: 1-13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219807

ABSTRACT

St. John's Wort preparations are used for the treatment of mild to moderate depression. They are usually well tolerated but can cause adverse reactions including liver toxicity in rare cases. To date, the mechanism(s) underlying the hepatotoxicity of St. John's Wort extracts are poorly investigated. We studied the hepatocellular toxicity of hypericin and hyperforin as the two main ingredients of St. John's Wort extracts in HepG2 and HepaRG cells and compared the effects to citalopram (a synthetic serotonin uptake inhibitor) with a special focus on mitochondrial toxicity and oxidative stress. In HepG2 cells, hypericin was membrane-toxic at 100 µM and depleted ATP at 20 µM. In HepaRG cells, ATP depletion started at 5 µM. In comparison, hyperforin and citalopram were not toxic up to 100 µM. In HepG2 cells, hypericin decreased maximal respiration starting at 2 µM and mitochondrial ATP formation starting at 10 µM but did not affect glycolytic ATP production. Hypericin inhibited the activity of complex I, II and IV of the electron transfer system and caused mitochondrial superoxide accumulation in cells. The protein expression of mitochondrial superoxide dismutase 2 (SOD2) and thioredoxin 2 (TRX2) and total and reduced glutathione decreased in cells exposed to hypericin. Finally, hypericin diminished the mitochondrial DNA copy number and caused cell necrosis but not apoptosis. In conclusion, hypericin, but not hyperforin or citalopram, is a mitochondrial toxicant at low micromolar concentrations. This mechanism may contribute to the hepatotoxicity occasionally observed in susceptible patients treated with St. John's Wort preparations.


Subject(s)
Anthracenes , Carcinoma, Hepatocellular , Chemical and Drug Induced Liver Injury , Hypericum , Liver Neoplasms , Perylene/analogs & derivatives , Phloroglucinol/analogs & derivatives , Terpenes , Humans , Plant Extracts/toxicity , Plant Extracts/therapeutic use , Hypericum/toxicity , Citalopram/toxicity , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Adenosine Triphosphate
14.
Br J Clin Pharmacol ; 90(1): 200-208, 2024 01.
Article in English | MEDLINE | ID: mdl-37596682

ABSTRACT

AIMS: Lysergic acid diethylamide (LSD) is currently investigated for several neurological and psychiatric illnesses. Various studies have investigated the pharmacokinetics and the pharmacokinetic-pharmacodynamic relationship of LSD in healthy participants, but data on urinary recovery and confirmatory studies are missing. METHODS: The present study characterized the pharmacokinetics, pharmacokinetic-pharmacodynamic relationship and urinary recovery of LSD at doses of 85 and 170 µg administered orally in 28 healthy participants. The plasma concentrations and subjective effects of LSD were continuously evaluated over a period of 24 h. Urine was collected during 3 time intervals (0-8, 8-16 and 16-24 h after LSD administration). Pharmacokinetic parameters were determined using compartmental modelling. Concentration-subjective effect relationships were described using pharmacokinetic-pharmacodynamic modelling. RESULTS: Mean (95% confidence interval) maximal LSD concentrations were 1.8 ng/mL (1.6-2.0) and 3.4 ng/mL (3.0-3.8) after the administration of 85 and 170 µg LSD, respectively. Maximal concentrations were achieved on average after 1.7 h. Elimination half-lives were 3.7 h (3.4-4.1) and 4.0 h (3.6-4.4), for 85 and 170 µg LSD, respectively. Only 1% of the administered dose was recovered from urine unchanged within the first 24 h, 16% was eliminated as 2-oxo-3-hydroxy-LSD. Urinary recovery was dose proportional. Mean (±standard deviation) durations of subjective effects were 9.3 ± 3.2 and 11 ± 3.7 h, and maximal effects (any drug effects) were 77 ± 18% and 87 ± 13% after 85 and 170 µg of LSD, respectively. CONCLUSION: The present novel study validates previous findings. LSD exhibited dose-proportional pharmacokinetics and first-order elimination kinetics and dose-dependent duration and intensity of subjective effects. LSD is extensively metabolized and shows dose-proportional urinary recovery.


Subject(s)
Hallucinogens , Lysergic Acid Diethylamide , Humans , Lysergic Acid Diethylamide/pharmacology , Hallucinogens/pharmacology , Healthy Volunteers , Cross-Over Studies , Double-Blind Method , Administration, Oral
15.
Malar J ; 22(1): 194, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355605

ABSTRACT

BACKGROUND: Ivermectin (22,23-dihydroavermectin B1a: H2B1a) is an endectocide used to treat worm infections and ectoparasites including lice and scabies mites. Furthermore, survival of malaria transmitting Anopheles mosquitoes is strongly decreased after feeding on humans recently treated with ivermectin. Currently, mass drug administration of ivermectin is under investigation as a potential novel malaria vector control tool to reduce Plasmodium transmission by mosquitoes. A "post-ivermectin effect" has also been reported, in which the survival of mosquitoes remains reduced even after ivermectin is no longer detectable in blood meals. In the present study, existing material from human clinical trials was analysed to understand the pharmacokinetics of ivermectin metabolites and feeding experiments were performed in Anopheles stephensi mosquitoes to assess whether ivermectin metabolites contribute to the mosquitocidal action of ivermectin and whether they may be responsible for the post-ivermectin effect. METHODS: Ivermectin was incubated in the presence of recombinant human cytochrome P450 3A4/5 (CYP 3A4/5) to produce ivermectin metabolites. In total, nine metabolites were purified by semi-preparative high-pressure liquid chromatography. The pharmacokinetics of the metabolites were assessed over three days in twelve healthy volunteers who received a single oral dose of 12 mg ivermectin. Blank whole blood was spiked with the isolated metabolites at levels matching the maximal blood concentration (Cmax) observed in pharmacokinetics study samples. These samples were fed to An. stephensi mosquitoes, and their survival and vitality was recorded daily over 3 days. RESULTS: Human CYP3A4 metabolised ivermectin more rapidly than CYP3A5. Ivermectin metabolites M1-M8 were predominantly formed by CYP3A4, whereas metabolite M9 (hydroxy-H2B1a) was mainly produced by CYP3A5. Both desmethyl-H2B1a (M1) and hydroxy-H2B1a (M2) killed all mosquitoes within three days post-feeding, while administration of desmethyl, hydroxy-H2B1a (M4) reduced survival to 35% over an observation period of 3 days. Ivermectin metabolites that underwent deglycosylation or hydroxylation at spiroketal moiety were not active against An. stephensi at Cmax levels. Interestingly, half-lives of M1 (54.2 ± 4.7 h) and M4 (57.5 ± 13.2 h) were considerably longer than that of the parent compound ivermectin (38.9 ± 20.8 h). CONCLUSION: In conclusion, the ivermectin metabolites M1 and M2 contribute to the activity of ivermectin against An. stephensi mosquitoes and could be responsible for the "post-ivermectin effect".


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Humans , Ivermectin/pharmacology , Cytochrome P-450 CYP3A , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Vectors
16.
Clin Pharmacokinet ; 62(8): 1141-1155, 2023 08.
Article in English | MEDLINE | ID: mdl-37328712

ABSTRACT

BACKGROUND AND OBJECTIVE: The impact of liver cirrhosis on the activity of UDP-glucuronosyltransferases (UGTs) is currently not well characterized. We investigated the glucuronidation capacity and glucuronide accumulation in patients with liver cirrhosis. METHODS: We administered the Basel phenotyping cocktail (caffeine, efavirenz, flurbiprofen, omeprazole, metoprolol, midazolam) to patients with liver cirrhosis (n = 16 Child A, n = 15 Child B, n = 5 Child C) and n = 12 control subjects and obtained pharmacokinetic profiles of substrates and primary metabolites and their glucuronides. RESULTS: Caffeine and its metabolite paraxanthine were only slightly glucuronidated. The metabolic ratio (AUCglucuronide/AUCparent, MR) was not affected for caffeine but decreased by 60% for paraxanthine glucuronide formation in Child C patients. Efavirenz was not glucuronidated whereas 8-hydroxyefavirenz was efficiently glucuronidated. The MR of 8-hydroxyefavirenz-glucuronide formation increased three-fold in Child C patients and was negatively correlated with the glomerular filtration rate. Flurbiprofen and omeprazole were not glucuronidated. 4-Hydroxyflurbiprofen and 5-hydroxyomeprazole were both glucuronidated but the corresponding MRs for glucuronide formation were not affected by liver cirrhosis. Metoprolol, but not α-hydroxymetoprolol, was glucuronidated, and the MR for metoprolol-glucuronide formation dropped by 60% in Child C patients. Both midazolam and its metabolite 1'-hydroxymidazolam underwent glucuronidation, and the corresponding MRs for glucuronide formation dropped by approximately 80% in Child C patients. No relevant glucuronide accumulation occurred in patients with liver cirrhosis. CONCLUSIONS: Detailed analysis revealed that liver cirrhosis may affect the activity of UGTs of the UGT1A and UGT2B subfamilies according to liver function. Clinically significant glucuronide accumulation did not occur in the population investigated. CLINICAL TRIAL REGISTRATION: NCT03337945.


Subject(s)
Flurbiprofen , Glucuronides , Child , Humans , Glucuronides/metabolism , Microsomes, Liver/metabolism , Flurbiprofen/metabolism , Midazolam/metabolism , Caffeine/metabolism , Metoprolol/metabolism , Glucuronosyltransferase/metabolism , Liver Cirrhosis , Uridine Diphosphate/metabolism
17.
Neuropsychopharmacology ; 48(11): 1659-1667, 2023 10.
Article in English | MEDLINE | ID: mdl-37231080

ABSTRACT

Mescaline, lysergic acid diethylamide (LSD), and psilocybin are classic serotonergic psychedelics. A valid, direct comparison of the effects of these substances is lacking. The main goal of the present study was to investigate potential pharmacological, physiological and phenomenological differences at psychoactive-equivalent doses of mescaline, LSD, and psilocybin. The present study used a randomized, double-blind, placebo-controlled, cross-over design to compare the acute subjective effects, autonomic effects, and pharmacokinetics of typically used, moderate to high doses of mescaline (300 and 500 mg), LSD (100 µg), and psilocybin (20 mg) in 32 healthy participants. A mescaline dose of 300 mg was used in the first 16 participants and 500 mg was used in the subsequent 16 participants. Acute subjective effects of 500 mg mescaline, LSD, and psilocybin were comparable across various psychometric scales. Autonomic effects of 500 mg mescaline, LSD, and psilocybin were moderate, with psilocybin causing a higher increase in diastolic blood pressure compared with LSD, and LSD showing a trend toward an increase in heart rate compared with psilocybin. The tolerability of mescaline, LSD, and psilocybin was comparable, with mescaline at both doses inducing slightly more subacute adverse effects (12-24 h) than LSD and psilocybin. Clear distinctions were seen in the duration of action between the three substances. Mescaline had the longest effect duration (mean: 11.1 h), followed by LSD (mean: 8.2 h), and psilocybin (mean: 4.9 h). Plasma elimination half-lives of mescaline and LSD were similar (approximately 3.5 h). The longer effect duration of mescaline compared with LSD was due to the longer time to reach maximal plasma concentrations and related peak effects. Mescaline and LSD, but not psilocybin, enhanced circulating oxytocin. None of the substances altered plasma brain-derived neurotrophic factor concentrations. In conclusion, the present study found no evidence of qualitative differences in altered states of consciousness that were induced by equally strong doses of mescaline, LSD, and psilocybin. The results indicate that any differences in the pharmacological profiles of mescaline, LSD, and psilocybin do not translate into relevant differences in the subjective experience. ClinicalTrials.gov identifier: NCT04227756.


Subject(s)
Hallucinogens , Psilocybin , Humans , Psilocybin/pharmacology , Mescaline/pharmacology , Lysergic Acid Diethylamide/pharmacology , Cross-Over Studies , Healthy Volunteers , Hallucinogens/pharmacology
18.
Transl Psychiatry ; 13(1): 172, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221177

ABSTRACT

N,N-dimethyltryptamine (DMT) is distinct among classic serotonergic psychedelics because of its short-lasting effects when administered intravenously. Despite growing interest in the experimental and therapeutic use of intravenous DMT, data are lacking on its clinical pharmacology. We conducted a double-blind, randomized, placebo-controlled crossover trial in 27 healthy participants to test different intravenous DMT administration regimens: placebo, low infusion (0.6 mg/min), high infusion (1 mg/min), low bolus + low infusion (15 mg + 0.6 mg/min), and high bolus + high infusion (25 mg + 1 mg/min). Study sessions lasted for 5 h and were separated by at least 1 week. Participant's lifetime use of psychedelics was ≤20 times. Outcome measures included subjective, autonomic, and adverse effects, pharmacokinetics of DMT, and plasma levels of brain-derived neurotropic factor (BDNF) and oxytocin. Low (15 mg) and high (25 mg) DMT bolus doses rapidly induced very intense psychedelic effects that peaked within 2 min. DMT infusions (0.6 or 1 mg/min) without a bolus induced slowly increasing and dose-dependent psychedelic effects that reached plateaus after 30 min. Both bolus doses produced more negative subjective effects and anxiety than infusions. After stopping the infusion, all drug effects rapidly decreased and completely subsided within 15 min, consistent with a short early plasma elimination half-life (t1/2α) of 5.0-5.8 min, followed by longer late elimination (t1/2ß = 14-16 min) after 15-20 min. Subjective effects of DMT were stable from 30 to 90 min, despite further increasing plasma concentrations, thus indicating acute tolerance to continuous DMT administration. Intravenous DMT, particularly when administered as an infusion, is a promising tool for the controlled induction of a psychedelic state that can be tailored to the specific needs of patients and therapeutic sessions.Trial registration: ClinicalTrials.gov identifier: NCT04353024.


Subject(s)
Hallucinogens , N,N-Dimethyltryptamine , Humans , Healthy Volunteers , Administration, Intravenous , Anxiety
19.
Neuropsychopharmacology ; 48(13): 1840-1848, 2023 12.
Article in English | MEDLINE | ID: mdl-37258715

ABSTRACT

There is renewed interest in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. Although acute subjective effects of LSD are mostly positive, negative subjective effects, including anxiety, may occur. The induction of overall positive acute subjective effects is desired in psychedelic-assisted therapy because positive acute experiences are associated with greater therapeutic long-term benefits. 3,4-Methylenedioxymethamphetamine (MDMA) produces marked positive subjective effects and is used recreationally with LSD, known as "candyflipping." The present study investigated whether the co-administration of MDMA can be used to augment acute subjective effects of LSD. We used a double-blind, randomized, placebo-controlled, crossover design with 24 healthy subjects (12 women, 12 men) to compare the co-administration of MDMA (100 mg) and LSD (100 µg) with MDMA and LSD administration alone and placebo. Outcome measures included subjective, autonomic, and endocrine effects and pharmacokinetics. MDMA co-administration with LSD did not change the quality of acute subjective effects compared with LSD alone. However, acute subjective effects lasted longer after LSD + MDMA co-administration compared with LSD and MDMA alone, consistent with higher plasma concentrations of LSD (Cmax and area under the curve) and a longer plasma elimination half-life of LSD when MDMA was co-administered. The LSD + MDMA combination increased blood pressure, heart rate, and pupil size more than LSD alone. Both MDMA alone and the LSD + MDMA combination increased oxytocin levels more than LSD alone. Overall, the co-administration of MDMA (100 mg) did not improve acute effects or the safety profile of LSD (100 µg). The combined use of MDMA and LSD is unlikely to provide relevant benefits over LSD alone in psychedelic-assisted therapy. Trial registration: ClinicalTrials.gov identifier: NCT04516902.


Subject(s)
Hallucinogens , N-Methyl-3,4-methylenedioxyamphetamine , Male , Humans , Female , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Hallucinogens/pharmacology , Healthy Volunteers , Lysergic Acid Diethylamide/pharmacology , Double-Blind Method , Cross-Over Studies
20.
Clin Pharmacol Ther ; 113(6): 1346-1358, 2023 06.
Article in English | MEDLINE | ID: mdl-37017611

ABSTRACT

Failure to perform adequate dose adjustment in patients with liver cirrhosis may be associated with increased toxicity. We compared the prediction of area under the curve (AUC) and clearance for the six compounds of the Basel phenotyping cocktail (caffeine, efavirenz, flurbiprofen, omeprazole, metoprolol, and midazolam) using a well-known physiology-based pharmacokinetic approach (physiologically-based pharmacokinetic [PBPK] approach, Simcyp) and a novel top-down method based on the systemic clearance in healthy volunteers adjusted for markers of liver and renal dysfunction ("top-down approach"). With few exceptions, plasma concentration-time curves were accurately predicted by the PBPK approach. In comparison to the measured AUC and clearance of these drugs in patients with liver cirrhosis and healthy controls, except for efavirenz, the estimates of both approaches were within two standard deviations of the mean for total and free drug concentrations. For both approaches, a correction factor for dose adjustment in patients with liver cirrhosis could be calculated for the drugs administered. AUCs calculated using the adjusted doses were comparable to the AUCs measured in control subjects, with slightly more accurate predictions generated by the PBPK approach. For drugs with a free fraction < 50%, predictions using free drug concentrations were more accurate than with total drug concentrations. In conclusion, both methods provided good qualitative predictions of the changes by liver cirrhosis in the pharmacokinetics of the six compounds investigated. The top-down approach is easier to implement but the PBPK approach predicted changes in drug exposure more accurately than the top-down approach and provided reliable estimates for plasma concentrations.


Subject(s)
Alkynes , Liver Cirrhosis , Humans , Liver Cirrhosis/drug therapy , Benzoxazines , Cyclopropanes , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL