Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; : e14288, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092674

ABSTRACT

Reactivation of retroelements in the human genome has been linked to aging. However, whether the epigenetic state of specific retroelements can predict chronological age remains unknown. We provide evidence that locus-specific retroelement DNA methylation can be used to create retroelement-based epigenetic clocks that accurately measure chronological age in the immune system, across human tissues, and pan-mammalian species. We also developed a highly accurate retroelement epigenetic clock compatible with EPICv.2.0 data that was constructed from CpGs that did not overlap with existing first- and second-generation epigenetic clocks, suggesting a unique signal for epigenetic clocks not previously captured. We found retroelement-based epigenetic clocks were reversed during transient epigenetic reprogramming, accelerated in people living with HIV-1, and responsive to antiretroviral therapy. Our findings highlight the utility of retroelement-based biomarkers of aging and support a renewed emphasis on the role of retroelements in geroscience.

2.
BMC Med ; 22(1): 301, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39069614

ABSTRACT

BACKGROUND: Geroscience focuses on interventions to mitigate molecular changes associated with aging. Lifestyle modifications, medications, and social factors influence the aging process, yet the complex molecular mechanisms require an in-depth exploration of the epigenetic landscape. The specific epigenetic clock and predictor effects of a vegan diet, compared to an omnivorous diet, remain underexplored despite potential impacts on aging-related outcomes. METHODS: This study examined the impact of an entirely plant-based or healthy omnivorous diet over 8 weeks on blood DNA methylation in paired twins. Various measures of epigenetic age acceleration (PC GrimAge, PC PhenoAge, DunedinPACE) were assessed, along with system-specific effects (Inflammation, Heart, Hormone, Liver, and Metabolic). Methylation surrogates of clinical, metabolite, and protein markers were analyzed to observe diet-specific shifts. RESULTS: Distinct responses were observed, with the vegan cohort exhibiting significant decreases in overall epigenetic age acceleration, aligning with anti-aging effects of plant-based diets. Diet-specific shifts were noted in the analysis of methylation surrogates, demonstrating the influence of diet on complex trait prediction through DNA methylation markers. An epigenome-wide analysis revealed differentially methylated loci specific to each diet, providing insights into the affected pathways. CONCLUSIONS: This study suggests that a short-term vegan diet is associated with epigenetic age benefits and reduced calorie intake. The use of epigenetic biomarker proxies (EBPs) highlights their potential for assessing dietary impacts and facilitating personalized nutrition strategies for healthy aging. Future research should explore the long-term effects of vegan diets on epigenetic health and overall well-being, considering the importance of proper nutrient supplementation. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT05297825.


Subject(s)
Aging , DNA Methylation , Diet, Vegan , Epigenesis, Genetic , Humans , Female , Male , Aging/genetics , Middle Aged , Aged , Diet , Twins/genetics , Diet, Vegetarian
3.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853852

ABSTRACT

Genome-wide association studies (GWAS) with proteomics are essential tools for drug discovery. To date, most studies have used affinity proteomics platforms, which have limited discovery to protein panels covered by the available affinity binders. Furthermore, it is not clear to which extent protein epitope changing variants interfere with the detection of protein quantitative trait loci (pQTLs). Mass spectrometry-based (MS) proteomics can overcome some of these limitations. Here we report a GWAS using the MS-based Seer Proteograph™ platform with blood samples from a discovery cohort of 1,260 American participants and a replication in 325 individuals from Asia, with diverse ethnic backgrounds. We analysed 1,980 proteins quantified in at least 80% of the samples, out of 5,753 proteins quantified across the discovery cohort. We identified 252 and replicated 90 pQTLs, where 30 of the replicated pQTLs have not been reported before. We further investigated 200 of the strongest associated cis-pQTLs previously identified using the SOMAscan and the Olink platforms and found that up to one third of the affinity proteomics pQTLs may be affected by epitope effects, while another third were confirmed by MS proteomics to be consistent with the hypothesis that genetic variants induce changes in protein expression. The present study demonstrates the complementarity of the different proteomics approaches and reports pQTLs not accessible to affinity proteomics, suggesting that many more pQTLs remain to be discovered using MS-based platforms.

4.
Nat Aging ; 4(6): 886-901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724732

ABSTRACT

DNA methylation clocks can accurately estimate chronological age and, to some extent, also biological age, yet the process by which age-associated DNA methylation (DNAm) changes are acquired appears to be quasi-stochastic, raising a fundamental question: how much of an epigenetic clock's predictive accuracy could be explained by a stochastic process of DNAm change? Here, using DNAm data from sorted immune cells, we build realistic simulation models, subsequently demonstrating in over 22,770 sorted and whole-blood samples from 25 independent cohorts that approximately 66-75% of the accuracy underpinning Horvath's clock could be driven by a stochastic process. This fraction increases to 90% for the more accurate Zhang's clock, but is lower (63%) for the PhenoAge clock, suggesting that biological aging is reflected by nonstochastic processes. Confirming this, we demonstrate that Horvath's age acceleration in males and PhenoAge's age acceleration in severe coronavirus disease 2019 cases and smokers are not driven by an increased rate of stochastic change but by nonstochastic processes. These results significantly deepen our understanding and interpretation of epigenetic clocks.


Subject(s)
Aging , COVID-19 , DNA Methylation , Epigenesis, Genetic , Stochastic Processes , Humans , Aging/genetics , Male , Female , COVID-19/genetics , Aged , Middle Aged , SARS-CoV-2/genetics , Adult
5.
Aging (Albany NY) ; 16(4): 3088-3106, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38393697

ABSTRACT

Senolytics, small molecules targeting cellular senescence, have emerged as potential therapeutics to enhance health span. However, their impact on epigenetic age remains unstudied. This study aimed to assess the effects of Dasatinib and Quercetin (DQ) senolytic treatment on DNA methylation (DNAm), epigenetic age, and immune cell subsets. In a Phase I pilot study, 19 participants received DQ for 6 months, with DNAm measured at baseline, 3 months, and 6 months. Significant increases in epigenetic age acceleration were observed in first-generation epigenetic clocks and mitotic clocks at 3 and 6 months, along with a notable decrease in telomere length. However, no significant differences were observed in second and third-generation clocks. Building upon these findings, a subsequent investigation evaluated the combination of DQ with Fisetin (DQF), a well-known antioxidant and antiaging senolytic molecule. After one year, 19 participants (including 10 from the initial study) received DQF for 6 months, with DNAm assessed at baseline and 6 months. Remarkably, the addition of Fisetin to the treatment resulted in non-significant increases in epigenetic age acceleration, suggesting a potential mitigating effect of Fisetin on the impact of DQ on epigenetic aging. Furthermore, our analyses unveiled notable differences in immune cell proportions between the DQ and DQF treatment groups, providing a biological basis for the divergent patterns observed in the evolution of epigenetic clocks. These findings warrant further research to validate and comprehensively understand the implications of these combined interventions.


Subject(s)
DNA Methylation , Flavonols , Quercetin , Humans , Quercetin/pharmacology , Dasatinib/pharmacology , Dasatinib/therapeutic use , Senotherapeutics , Longitudinal Studies , Pilot Projects , Aging , Epigenesis, Genetic
6.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293193

ABSTRACT

Background: Differentially methylated imprint control regions (ICRs) regulate the monoallelic expression of imprinted genes. Their epigenetic dysregulation by environmental exposures throughout life results in the formation of common chronic diseases. Unfortunately, existing Infinium methylation arrays lack the ability to profile these regions adequately. Whole genome bisulfite sequencing (WGBS) is the unique method able to profile these regions, but it is very expensive and it requires not only a high coverage but it is also computationally intensive to assess those regions. Findings: To address this deficiency, we developed a custom methylation array containing 22,819 probes. Among them, 9,757 probes map to 1,088 out of the 1,488 candidate ICRs recently described. To assess the performance of the array, we created matched samples processed with the Human Imprintome array and WGBS, which is the current standard method for assessing the methylation of the Human Imprintome. We compared the methylation levels from the shared CpG sites and obtained a mean R 2 = 0.569. We also created matched samples processed with the Human Imprintome array and the Infinium Methylation EPIC v2 array and obtained a mean R 2 = 0.796. Furthermore, replication experiments demonstrated high reliability (ICC: 0.799-0.945). Conclusions: Our custom array will be useful for replicable and accurate assessment, mechanistic insight, and targeted investigation of ICRs. This tool should accelerate the discovery of ICRs associated with a wide range of diseases and exposures, and advance our understanding of genomic imprinting and its relevance in development and disease formation throughout the life course.

7.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106164

ABSTRACT

Human endogenous retroviruses (HERVs), the remnants of ancient viral infections embedded within the human genome, and long interspersed nuclear elements 1 (LINE-1), a class of autonomous retrotransposons, are silenced by host epigenetic mechanisms including DNA methylation. The resurrection of particular retroelements has been linked to biological aging. Whether the DNA methylation states of locus specific HERVs and LINEs can be used as a biomarker of chronological age in humans remains unclear. We show that highly predictive epigenetic clocks of chronological age can be constructed from retroelement DNA methylation states in the immune system, across human tissues, and pan-mammalian species. We found retroelement epigenetic clocks were reversed during transient epigenetic reprogramming, accelerated in people living with HIV-1, responsive to antiretroviral therapy, and accurate in estimating long-term culture ages of human brain organoids. Our findings support the hypothesis of epigenetic dysregulation of retroelements as a potential contributor to the biological hallmarks of aging.

8.
Article in English | MEDLINE | ID: mdl-38455390

ABSTRACT

Infinium Methylation BeadChips are widely used to profile DNA cytosine modifications in large cohort studies for reasons of cost-effectiveness, accurate quantification, and user-friendly data analysis in characterizing these canonical epigenetic marks. In this work, we conducted a comprehensive evaluation of the updated Infinium MethylationEPIC v2 BeadChip (EPICv2). Our evaluation revealed that EPICv2 offers significant improvements over its predecessors, including expanded enhancer coverage, applicability to diverse ancestry groups, support for low-input DNA down to one nanogram, coverage of existing epigenetic clocks, cell type deconvolution panels, and human trait associations, while maintaining accuracy and reproducibility. Using EPICv2, we were able to identify epigenome and sequence signatures in cell line models of DNMT and SETD2 loss and/or hypomorphism. Furthermore, we provided probe-wise evaluation and annotation to facilitate the use of new features on this array for studying the interplay between somatic mutations and epigenetic landscape in cancer genomics. In conclusion, EPICv2 provides researchers with a valuable tool for studying epigenetic modifications and their role in development and disease.

SELECTION OF CITATIONS
SEARCH DETAIL