Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-19, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948309

ABSTRACT

A wide variety of natural products have been widely used in chemoprevention therapy because they have antioxidant, anti-inflammatory, and anticancer activity. In the present study, we shed light on the 5th day germinated sprouts of N. sativa seeds and evaluated them against HDAC inhibition and antioxidant activity. The extract from the seed and sprout was extracted and characterised by LC-MS/MS, FTIR, and NMR to reveal its chemical composition, especially thymol (THY) and thymoquinone (TQ). Hepatocellular carcinoma (HCC) is a global health concern as it is a major lifestyle disease. Hence, incorporating herbal-based therapeutic compounds into everyday routines has become an attractive alternative for preventing hepatic diseases. Histone deacetylase (HDAC) inhibition (HDACi) is emerging as a promising therapeutic strategy for managing various carcinomas including HCC. Therefore, the 5th day of N. sativa can be used as a potential anticancer agent by inhibiting HDAC activity, as it is reported to have an important role in the management of oxidative stress. The bioactive compound of N. sativa, i.e. thymoquinone, also showed a good binding affinity with the HDAC protein (3MAX) with a stable interaction in an in silico study as compared to the standard drug (Trichostatin A) and thymol.Communicated by Ramaswamy H. Sarma.

2.
Environ Res ; 218: 114943, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36463991

ABSTRACT

The current study is focused on the effects of artificial UV-B radiation on growth, proteins, and pigments, as well as the activities of several enzymatic and non-enzymatic antioxidant enzymes in some cyanobacterial strains. Cultures were maintained at 25 °C ± 1 °C under a white fluorescent tube of intensity 30-40 µE m -2s-1 with a 14:10 light and dark cycle in the laboratory and analyzed at an interval of 25, 32, 39, 46, and 53 days. The test cultures were exposed to UV-B stress for 24 h at the same intervals. We found that exposure to UV-B showed increased production of phycocyanin and carotenoids in four strains, namely, Scytonema javanicum, Nostoc muscorum, Aphanothece naegeli, and Synechococcus elongates. We also look into the effects of UV-B radiation on the proline content, non-protein thiols, radical scavenging activity, ascorbic acid, and tocopherol, total flavonoid content (TFC), total phenolic content (TPC) on these strains. Variation in the non-enzymatic antioxidants and expression levels of enzymatic enzymes and reducing power activity as compared to the non-irradiated control was found. Our study showed that cyanobacteria impart prominent antioxidant and radical scavenging properties which facilitate the defence mechanism against UV-B induced cell damage.


Subject(s)
Antioxidants , Cyanobacteria , Antioxidants/metabolism , Ultraviolet Rays , Photosynthesis , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Cyanobacteria/metabolism , Cyanobacteria/radiation effects
3.
J Cell Physiol ; 234(5): 6951-6964, 2019 05.
Article in English | MEDLINE | ID: mdl-30443899

ABSTRACT

In the recent past, various groups have proposed diverse biocompatible methods for the synthesis of metal nanoparticles (NPs). Besides culture biomass, culture supernatants (CS) are increasingly being explored for the synthesis of NPs; however, with the ever-increasing exploration of various CS in the biofabrication of NPs, it is equally important to explore the potential of various culture media (CMs) in the synthesis of metal NPs. Considering these aspects, in the present investigation, we explore the possible applicability of various CMs in the biofabrication of metal NPs. The synthesis of NPs was primarily followed by UV/VIS spectroscopy, and, thereafter, the NPs were characterized by various physiochemical techniques, including EM, EDX, FT_IR, X-ray diffraction, and DLS measurements, and finally, their anticancer potentialities were investigated against breast cancer. In addition, the NPs were examined in conjunction with artemisinin for therapeutic benefits against aggressive and highly metastatic MDA-MB-231 breast cancer cells. Cumulatively, the results of the present study collated the potentials of various bacterial CMs in the biofabrication of metal NPs and ascertained the efficacy of the as-synthesized silver nanoparticles, especially the combinatorial entity as intriguing breast cancer therapeutics. The data of the present study plausibly assist in advancing the therapeutic applicability of the combinatorial amalgam against aggressive and highly metastatic MDA-MB-231 breast cancer cells.


Subject(s)
Artemisinins/chemistry , Artemisinins/pharmacology , Bacteria/metabolism , Breast Neoplasms/drug therapy , Culture Media/metabolism , Metal Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Cell Line, Tumor , Female , HEK293 Cells , Humans , MCF-7 Cells , Particle Size , Silver/chemistry
4.
Mol Carcinog ; 56(4): 1266-1280, 2017 04.
Article in English | MEDLINE | ID: mdl-27813185

ABSTRACT

Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast/drug effects , Curcumin/analogs & derivatives , Curcumin/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Breast/metabolism , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Curcumin/pharmacology , DNA/genetics , DNA/metabolism , DNA Damage/drug effects , Female , Humans , Molecular Docking Simulation , Rats , Triazoles/chemistry , Triazoles/pharmacology , Tumor Suppressor Protein p53/metabolism
5.
Int J Biochem Cell Biol ; 65: 275-87, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26115963

ABSTRACT

Autophagy is considered as an important cell death mechanism that closely interacts with other common cell death programs like apoptosis. Critical role of autophagy in cell death makes it a promising, yet challenging therapeutic target for cancer. We identified a series of 1,2,3-triazole analogs having significant breast cancer inhibition property. Therefore, we attempted to study whether autophagy and apoptosis were involved in the process of cancer cell inhibition. The lead molecule, 1-(1-benzyl-5-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)-2-(4-bromophenylamino)-1-(4-chlorophenyl)ethanol (T-12) induced significant cell cycle arrest, mitochondrial membrane depolarization, apoptosis and autophagy in MCF-7 and MDA-MB-231 cells. T-12 increased reactive oxygen species and its inhibition by N-acetyl-L-cysteine protected breast cancer cells from autophagy and apoptosis. Autophagy inhibitor, 3-methyladenine abolished T-12 induced apoptosis, mitochondrial membrane depolarization and reactive oxygen species generation. This suggested that T-12 induced autophagy facilitated cell death rather than cell survival. Pan-caspase inhibition did not abrogate T-12 induced autophagy, suggesting that autophagy precedes apoptosis. In addition, T-12 inhibited cell survival pathway signaling proteins, Akt, mTOR and Erk1/2. T-12 also induced significant regression of tumor with oral dose of as low as 10mg/kg bodyweight in rat mammary tumor model without any apparent toxicity. In presence of reactive oxygen species inhibitor (N-acetyl-L-cysteine) and autophagy inhibitor (chloroquine), T-12 induced tumor regression was significantly decreased. In conclusion, T-12 is a potent inducer of autophagy-dependent apoptosis in breast cancer cells both in vitro and in vivo and can serve as an important lead in development of new anti-tumor therapy.


Subject(s)
Breast Neoplasms/drug therapy , Ethanol/analogs & derivatives , Reactive Oxygen Species/metabolism , Triazoles/pharmacology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Ethanol/pharmacology , Female , HEK293 Cells , Humans , MCF-7 Cells , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...