Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36978372

ABSTRACT

Burkholderia pseudomallei, the causative agent of the disease melioidosis, has been isolated from the environment in 45 countries. The treatment of melioidosis is complex, requiring lengthy antibiotic regimens, which can result in the relapse of the disease following treatment cessation. It is important that novel therapies to treat infections with B. pseudomallei be assessed in appropriate animal models, and discussions regarding the different protocols used between laboratories are critical. A 'deep dive' was held in October 2020 focusing on the use of the BALB/c mouse model and the inhalational route of infection to evaluate new antibiotic therapies.

2.
Viruses ; 14(5)2022 05 10.
Article in English | MEDLINE | ID: mdl-35632755

ABSTRACT

The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure-combined intratracheal/intranasal and small particle aerosol-in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.


Subject(s)
COVID-19 , Aerosols , Animals , Disease Models, Animal , Macaca fascicularis , SARS-CoV-2 , Severity of Illness Index
3.
Am J Trop Med Hyg ; 103(5): 2024-2025, 2020 11.
Article in English | MEDLINE | ID: mdl-32930089

ABSTRACT

We modeled the stability of SARS-CoV-2 on apples, tomatoes, and jalapeño peppers at two temperatures following a low-dose aerosol exposure designed to simulate an airborne transmission event involving droplet nuclei. Infectious virus was not recovered postexposure.


Subject(s)
Betacoronavirus/isolation & purification , Food Contamination/analysis , Fruit/virology , Vegetables/virology , Aerosols , Fomites/virology , SARS-CoV-2 , Temperature
4.
Comp Med ; 63(3): 252-61, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23759528

ABSTRACT

Previous studies have demonstrated that prior infection by various bacterial pathogens induces nonspecific resistance to subsequent infection by other gram-negative and gram-positive bacterial pathogens. In the present study, we evaluated whether underlying inflammation enhanced host resistance to inhalational Bacillus anthracis infection in New Zealand White rabbits (SPF; Bordetella- and Pasteurella-free). Accordingly, rabbits were pretreated with either the inflammagen bacterial LPS (60,000 EU/kg), a component of the outer membrane of gram-negative bacteria, or saline (vehicle). Administration of LPS resulted in brief pyrexia and a significant increase in the proinflammatory cytokine TNFα, thus confirming LPS-induced inflammation. At 24 h after LPS treatment, rabbits were exposed to aerosolized B. anthracis spores (Ames strain; approximately 300 LD50). Blood samples collected at various times after challenge were cultured. Compared with their saline-pretreated counterparts, LPS-pretreated, B. anthracis challenged rabbits exhibited delays in 2 biomarkers of B. anthracis infection-anthrax-induced pyrexia (25 h versus 66 h after challenge, respectively) and bacteremia (26 h versus 63 h, respectively)-and survived longer (41 h versus 90 h, respectively). Similar to control animals, all LPS-pretreated, B. anthracis-challenged rabbits exhibited pathology consistent with inhalational anthrax. Taken together, these results suggest that prior or underlying stimulation of the innate immune system induces transient host resistance to subsequent B. anthracis infection in SPF New Zealand white rabbits. In particular, our results emphasize the importance of using animals that are free of underlying infections to prevent confounding data in studies for inhalational anthrax characterization and medical countermeasure evaluation.


Subject(s)
Anthrax/prevention & control , Bacillus anthracis/pathogenicity , Lipopolysaccharides/pharmacology , Aerosols , Animals , Bacillus anthracis/physiology , Dose-Response Relationship, Drug , Female , Lethal Dose 50 , Male , Rabbits , Spores, Bacterial
5.
Comp Med ; 60(6): 461-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21262133

ABSTRACT

The natural history for inhalational Bacillus anthracis (Ames strain) exposure in New Zealand white rabbits was investigated to better identify potential, early biomarkers of anthrax. Twelve SPF Bordetella-free rabbits were exposed to 150 LD(50) aerosolized B. anthracis spores, and clinical signs, body temperature, complete blood count, bacteremia, and presence of protective antigen in the blood (that is, antigenemia) were examined. The development of antigenemia and bacteremia coincided and preceded both pyrexia and inversion of the heterophil:lymphocyte ratio, an indicator of infection. Antigenemia was determined within 1 h by electrochemiluminescence immunoassay, compared with the 24-h traditional culture needed for bacteremia determination. Rabbits appeared clinically normal until shortly before succumbing to anthrax approximately 47 h after challenge or approximately 22 h after antigenemia, which suggests a relatively narrow therapeutic window of opportunity. To evaluate the therapeutic rabbit model, B. anthracis-exposed rabbits were treated (after determination of antigenemia and later confirmed to be bacteremic) intravenously with the fluoroquinolone antibiotic levofloxacin for 5 d at a total daily dose of 25 or 12.5 mg/kg, resulting in nearly 90% and 70% survival, respectively, to the study end (28 d after challenge). The peak level for 12.5 mg/kg was equivalent to that observed for a 500-mg daily levofloxacin dose in humans. These results suggest that intravenous levofloxacin is an effective therapeutic against inhalational anthrax. Taken together, our findings indicate that antigenemia is a viable and early biomarker for B. anthracis infection that can be used as a treatment trigger to allow for timely intervention against this highly pathogenic disease.


Subject(s)
Anthrax/drug therapy , Anti-Bacterial Agents/therapeutic use , Levofloxacin , Ofloxacin/therapeutic use , Aerosols , Animals , Anthrax/diagnosis , Anti-Bacterial Agents/administration & dosage , Antigens, Bacterial/blood , Bacillus anthracis/immunology , Bacteremia/diagnosis , Bacteremia/drug therapy , Biomarkers/blood , Female , Male , Ofloxacin/administration & dosage , Rabbits , Spores, Bacterial , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...