Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 143(2): 1223, 2018 02.
Article in English | MEDLINE | ID: mdl-29495750

ABSTRACT

The ocean acoustic noise floor (observed when the overhead wind is low, ships are distant, and marine life silent) has been measured on an array extending up 987 m from 5048 m depth in the eastern North Pacific, in what is one of only a few recent measurements of the vertical noise distribution near the seafloor in the deep ocean. The floor is roughly independent of depth for 1-6 Hz, and the slope (∼ f-7) is consistent with Longuet-Higgins radiation from oppositely-directed surface waves. Above 6 Hz, the acoustic floor increases with frequency due to distant shipping before falling as ∼ f-2 from 40 to 800 Hz. The noise floor just above the seafloor is only about 5 dB greater than during the 1975 CHURCH OPAL experiment (50-200 Hz), even though these measurements are not subject to the same bathymetric blockage. The floor increases up the array by roughly 15 dB for 40-500 Hz. Immediately above the seafloor, the acoustic energy is concentrated in a narrow, horizontal beam that narrows as f-1 and has a beam width at 75 Hz that is less than the array resolution. The power in the beam falls more steeply with frequency than the omnidirectional spectrum.

2.
J Acoust Soc Am ; 134(4): 3201-10, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116516

ABSTRACT

Vertical travel-time sensitivity kernels (VTSKs) describe the effect of horizontally uniform sound-speed changes on travel times in range-independent ocean environments. Wave-theoretic VTSKs can be obtained either analytically, through perturbation of the normal-mode representation, or numerically, as horizontal marginals of the corresponding two-dimensional and three-dimensional travel-time sensitivity kernels. In previous works, it has been observed that wave-theoretic finite-frequency VTSKs approach the corresponding ray-theoretic sensitivity kernels as the propagation range increases. The present work is an attempt to explain this behavior. A stationary-phase approach is used to obtain a long-range asymptotic expression for the wave-theoretic VTSKs. The resulting asymptotic VTSKs are very close to the corresponding ray-theoretic ones. The smoothness condition, required for the stationary-phase approximation to hold, is used to obtain an estimate for the range beyond which the asymptotic behavior sets in.


Subject(s)
Acoustics , Oceanography/methods , Seawater , Sound , Computer Simulation , Fourier Analysis , Linear Models , Motion , Numerical Analysis, Computer-Assisted , Oceans and Seas , Pressure , Sound Spectrography , Time Factors
3.
J Acoust Soc Am ; 126(5): 2223-33, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19894803

ABSTRACT

Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels.


Subject(s)
Acoustics , Models, Theoretical , Oceanography/methods , Time Factors
4.
J Acoust Soc Am ; 117(3 Pt 2): 1643-65, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15810696

ABSTRACT

We examine statistical and directional properties of the ambient noise in the 10-100 Hz frequency band from the NPAL array. Marginal probability densities are estimated as well as mean square levels, skewness and kurtoses in third octave bands. The kurotoses are markedly different from Gaussian except when only distant shipping is present. Extremal levels reached approximately 150 dB re 1 micro Pa, suggesting levels 60dB greater than the mean ambient were common in the NPAL data sets. Generally, these were passing ships. We select four examples: i) quiescent noise, ii) nearby shipping, iii) whale vocalizations and iv) a micro earthquake for the vertical directional properties of the NPAL noise since they are representative of the phenomena encountered. We find there is modest broadband coherence for most of these cases in their occupancy band across the NPAL aperture. Narrowband coherence analysis from VLA to VLA was not successful due to ambiguities. Examples of localizing sources based upon this coherence are included. kw diagrams allow us to use data above the vertical aliasing frequency. Ducted propagation for both the quiescent and micro earthquake (T phase) are identified and the arrival angles of nearby shipping and whale vocalizations. MFP localizations were modestly successful for nearby sources, but long range ones could not be identified, most likely because of signal mismatch in the MFP replica.


Subject(s)
Acoustics , Disasters , Noise , Ships , Vocalization, Animal , Whales/physiology , Acoustic Stimulation , Animals , Normal Distribution , Pacific Ocean , ROC Curve , Seawater , Sound Localization , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL