Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Nature ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385032

ABSTRACT

The human hippocampus and prefrontal cortex play critical roles in learning and cognition1,2, yet the dynamic molecular characteristics of their development remain enigmatic. Here we investigated the epigenomic and three-dimensional chromatin conformational reorganization during the development of the hippocampus and prefrontal cortex, using more than 53,000 joint single-nucleus profiles of chromatin conformation and DNA methylation generated by single-nucleus methyl-3C sequencing (snm3C-seq3)3. The remodelling of DNA methylation is temporally separated from chromatin conformation dynamics. Using single-cell profiling and multimodal single-molecule imaging approaches, we have found that short-range chromatin interactions are enriched in neurons, whereas long-range interactions are enriched in glial cells and non-brain tissues. We reconstructed the regulatory programs of cell-type development and differentiation, finding putatively causal common variants for schizophrenia strongly overlapping with chromatin loop-connected, cell-type-specific regulatory regions. Our data provide multimodal resources for studying gene regulatory dynamics in brain development and demonstrate that single-cell three-dimensional multi-omics is a powerful approach for dissecting neuropsychiatric risk loci.

2.
bioRxiv ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39229027

ABSTRACT

Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the 'Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics' to assess machine learning and feature-based methods designed to nominate enhancer DNA sequences to target cell types in the mouse cortex. Methods were evaluated based on in vivo validation data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of functional enhancers, and sequence models improved prediction of non-functional enhancers that can be deprioritized as opposed to pursued for in vivo testing. Sequence models also identified cell type-specific transcription factor codes that can guide designs of in silico enhancers. This community challenge establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches and molecular information that are crucial for the identification of functional enhancers for mammalian cortical cell types. The results of this challenge bring us closer to understanding the complex gene regulatory landscape of the mammalian brain and help us design more efficient genetic tools and potential gene therapies for human neurological diseases.

3.
Genome Res ; 34(7): 1106-1120, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38951025

ABSTRACT

Single-cell genomics permits a new resolution in the examination of molecular and cellular dynamics, allowing global, parallel assessments of cell types and cellular behaviors through development and in response to environmental circumstances, such as interaction with water and the light-dark cycle of the Earth. Here, we leverage the smallest, and possibly most structurally reduced, plant, the semiaquatic Wolffia australiana, to understand dynamics of cell expression in these contexts at the whole-plant level. We examined single-cell-resolution RNA-sequencing data and found Wolffia cells divide into four principal clusters representing the above- and below-water-situated parenchyma and epidermis. Although these tissues share transcriptomic similarity with model plants, they display distinct adaptations that Wolffia has made for the aquatic environment. Within this broad classification, discrete subspecializations are evident, with select cells showing unique transcriptomic signatures associated with developmental maturation and specialized physiologies. Assessing this simplified biological system temporally at two key time-of-day (TOD) transitions, we identify additional TOD-responsive genes previously overlooked in whole-plant transcriptomic approaches and demonstrate that the core circadian clock machinery and its downstream responses can vary in cell-specific manners, even in this simplified system. Distinctions between cell types and their responses to submergence and/or TOD are driven by expression changes of unexpectedly few genes, characterizing Wolffia as a highly streamlined organism with the majority of genes dedicated to fundamental cellular processes. Wolffia provides a unique opportunity to apply reductionist biology to elucidate signaling functions at the organismal level, for which this work provides a powerful resource.


Subject(s)
Araceae , Gene Expression Regulation, Plant , Transcriptome , Araceae/genetics , Araceae/metabolism , Single-Cell Analysis/methods , Gene Expression Profiling/methods
4.
Bioinformatics ; 40(7)2024 07 01.
Article in English | MEDLINE | ID: mdl-38905499

ABSTRACT

MOTIVATION: With single-cell DNA methylation studies yielding vast datasets, existing data formats struggle with the unique challenges of storage and efficient operations, highlighting a need for improved solutions. RESULTS: BAllC (Binary All Cytosines) emerges as a tailored format for methylation data, addressing these challenges. BAllCools, its complementary software toolkit, enhances parsing, indexing, and querying capabilities, promising superior operational speeds and reduced storage needs. AVAILABILITY AND IMPLEMENTATION: https://github.com/jksr/ballcools.


Subject(s)
DNA Methylation , Single-Cell Analysis , Software , Single-Cell Analysis/methods , Humans , Computational Biology/methods
5.
Neuron ; 112(15): 2524-2539.e5, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38838671

ABSTRACT

Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors. Excitatory neurons had more profound age-related changes in their gene expression and DNA methylation than inhibitory cells. Hundreds of genes involved in synaptic activity, including EGR1, were less expressed in aged adults. Genes located in subtelomeric regions increased their expression with age and correlated with reduced telomere length. We further mapped cell-type-specific sex differences in gene expression and X-inactivation escape genes. Multi-omic single-nucleus epigenomes and transcriptomes provide new insight into the effects of age and sex on human neurons.


Subject(s)
DNA Methylation , Neurons , Humans , Neurons/metabolism , Neurons/physiology , Female , Male , Adult , Aged , Young Adult , Aging/physiology , Aging/genetics , Sex Characteristics , Middle Aged , Epigenesis, Genetic , Transcriptome , Age Factors , Aged, 80 and over , Frontal Lobe/metabolism , Frontal Lobe/cytology , X Chromosome Inactivation/genetics , Cerebral Cortex/cytology , Cerebral Cortex/metabolism
6.
Elife ; 122024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904663

ABSTRACT

Soil-free assays that induce water stress are routinely used to investigate drought responses in the plant Arabidopsis thaliana. Due to their ease of use, the research community often relies on polyethylene glycol (PEG), mannitol, and salt (NaCl) treatments to reduce the water potential of agar media, and thus induce drought conditions in the laboratory. However, while these types of stress can create phenotypes that resemble those of water deficit experienced by soil-grown plants, it remains unclear how these treatments compare at the transcriptional level. Here, we demonstrate that these different methods of lowering water potential elicit both shared and distinct transcriptional responses in Arabidopsis shoot and root tissue. When we compared these transcriptional responses to those found in Arabidopsis roots subject to vermiculite drying, we discovered many genes induced by vermiculite drying were repressed by low water potential treatments on agar plates (and vice versa). Additionally, we also tested another method for lowering water potential of agar media. By increasing the nutrient content and tensile strength of agar, we show the 'hard agar' (HA) treatment can be leveraged as a high-throughput assay to investigate natural variation in Arabidopsis growth responses to low water potential.


Subject(s)
Arabidopsis , Plant Roots , Transcriptome , Water , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/drug effects , Water/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Regulation, Plant/drug effects , High-Throughput Screening Assays/methods , Droughts , Plant Shoots/growth & development , Plant Shoots/drug effects , Gene Expression Profiling/methods
8.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798507

ABSTRACT

Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes ANXA11 and TSPAN14. We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.

9.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328094

ABSTRACT

DNA methylation (DNAm), a crucial epigenetic mark, plays a key role in gene regulation, mammalian development, and various human diseases. Single-cell technologies enable the profiling of DNAm states at cytosines within the DNA sequence of individual cells, but they often suffer from limited coverage of CpG sites. In this study, we introduce scMeFormer, a transformer-based deep learning model designed to impute DNAm states for each CpG site in single cells. Through comprehensive evaluations, we demonstrate the superior performance of scMeFormer compared to alternative models across four single-nucleus DNAm datasets generated by distinct technologies. Remarkably, scMeFormer exhibits high-fidelity imputation, even when dealing with significantly reduced coverage, as low as 10% of the original CpG sites. Furthermore, we applied scMeFormer to a single-nucleus DNAm dataset generated from the prefrontal cortex of four schizophrenia patients and four neurotypical controls. This enabled the identification of thousands of differentially methylated regions associated with schizophrenia that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia within specific cell types. Our study highlights the power of deep learning in imputing DNAm states in single cells, and we expect scMeFormer to be a valuable tool for single-cell DNAm studies.

11.
Nature ; 625(7996): 750-759, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200311

ABSTRACT

Iron is critical during host-microorganism interactions1-4. Restriction of available iron by the host during infection is an important defence strategy, described as nutritional immunity5. However, this poses a conundrum for externally facing, absorptive tissues such as the gut epithelium or the plant root epidermis that generate environments that favour iron bioavailability. For example, plant roots acquire iron mostly from the soil and, when iron deficient, increase iron availability through mechanisms that include rhizosphere acidification and secretion of iron chelators6-9. Yet, the elevated iron bioavailability would also be beneficial for the growth of bacteria that threaten plant health. Here we report that microorganism-associated molecular patterns such as flagellin lead to suppression of root iron acquisition through a localized degradation of the systemic iron-deficiency signalling peptide Iron Man 1 (IMA1) in Arabidopsis thaliana. This response is also elicited when bacteria enter root tissues, but not when they dwell on the outer root surface. IMA1 itself has a role in modulating immunity in root and shoot, affecting the levels of root colonization and the resistance to a bacterial foliar pathogen. Our findings reveal an adaptive molecular mechanism of nutritional immunity that affects iron bioavailability and uptake, as well as immune responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bacteria , Intracellular Signaling Peptides and Proteins , Iron , Pathogen-Associated Molecular Pattern Molecules , Plant Roots , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Bacteria/immunology , Bacteria/metabolism , Flagellin/immunology , Gene Expression Regulation, Plant , Intracellular Signaling Peptides and Proteins/metabolism , Iron/metabolism , Plant Immunity , Plant Roots/immunology , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/immunology , Plant Shoots/metabolism , Plant Shoots/microbiology , Rhizosphere , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism
12.
Nature ; 624(7991): 366-377, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092913

ABSTRACT

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Subject(s)
Brain , DNA Methylation , Epigenome , Multiomics , Single-Cell Analysis , Animals , Mice , Brain/cytology , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/metabolism , Datasets as Topic , Transcription Factors/metabolism , Transcription, Genetic
13.
Nature ; 624(7991): 355-365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092919

ABSTRACT

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Subject(s)
Brain , Epigenomics , Neural Pathways , Neurons , Animals , Mice , Amygdala , Brain/cytology , Brain/metabolism , Consensus Sequence , Datasets as Topic , Gene Expression Profiling , Hypothalamus/cytology , Mesencephalon/cytology , Neural Pathways/cytology , Neurons/metabolism , Neurotransmitter Agents/metabolism , Regulatory Sequences, Nucleic Acid , Rhombencephalon/cytology , Single-Cell Analysis , Thalamus/cytology , Transcription Factors/metabolism
14.
Nature ; 624(7991): 390-402, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092918

ABSTRACT

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Subject(s)
Conserved Sequence , Evolution, Molecular , Gene Expression Regulation , Gene Regulatory Networks , Mammals , Neocortex , Animals , Humans , Mice , Callithrix/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Methylation , DNA Transposable Elements/genetics , Epigenome , Gene Expression Regulation/genetics , Macaca/genetics , Mammals/genetics , Motor Cortex/cytology , Motor Cortex/metabolism , Multiomics , Neocortex/cytology , Neocortex/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Single-Cell Analysis , Transcription Factors/metabolism , Genetic Variation/genetics
15.
Nature ; 624(7991): 378-389, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092917

ABSTRACT

Recent advances in single-cell technologies have led to the discovery of thousands of brain cell types; however, our understanding of the gene regulatory programs in these cell types is far from complete1-4. Here we report a comprehensive atlas of candidate cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing chromatin accessibility in 2.3 million individual brain cells from 117 anatomical dissections. The atlas includes approximately 1 million cCREs and their chromatin accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs to the most recent such annotation in the mouse genome. The mouse brain cCREs are moderately conserved in the human brain. The mouse-specific cCREs-specifically, those identified from a subset of cortical excitatory neurons-are strongly enriched for transposable elements, suggesting a potential role for transposable elements in the emergence of new regulatory programs and neuronal diversity. Finally, we infer the gene regulatory networks in over 260 subclasses of mouse brain cells and develop deep-learning models to predict the activities of gene regulatory elements in different brain cell types from the DNA sequence alone. Our results provide a resource for the analysis of cell-type-specific gene regulation programs in both mouse and human brains.


Subject(s)
Brain , Chromatin , Single-Cell Analysis , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Cerebral Cortex/cytology , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Deep Learning , DNA Transposable Elements/genetics , Gene Regulatory Networks/genetics , Neurons/metabolism
16.
bioRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37808734

ABSTRACT

Motivation: With single-cell DNA methylation studies yielding vast datasets, existing data formats struggle with the unique challenges of storage and efficient operations, highlighting a need for improved solutions. Results: BAllC (Binary All Cytosines) emerges as a tailored binary format for methylation data, addressing these challenges. BAllCools, its complementary software toolkit, enhances parsing, indexing, and querying capabilities, promising superior operational speeds and reduced storage needs. Availability: https://github.com/jksr/ballcools.

18.
Science ; 382(6667): eadf7044, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824643

ABSTRACT

Recent advances in single-cell transcriptomics have illuminated the diverse neuronal and glial cell types within the human brain. However, the regulatory programs governing cell identity and function remain unclear. Using a single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), we explored open chromatin landscapes across 1.1 million cells in 42 brain regions from three adults. Integrating this data unveiled 107 distinct cell types and their specific utilization of 544,735 candidate cis-regulatory DNA elements (cCREs) in the human genome. Nearly a third of the cCREs demonstrated conservation and chromatin accessibility in the mouse brain cells. We reveal strong links between specific brain cell types and neuropsychiatric disorders including schizophrenia, bipolar disorder, Alzheimer's disease (AD), and major depression, and have developed deep learning models to predict the regulatory roles of noncoding risk variants in these disorders.


Subject(s)
Atlases as Topic , Brain , Chromatin , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Chromatin/metabolism , DNA/metabolism , Neurons/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Single-Cell Analysis
19.
Science ; 382(6667): eadf5357, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824674

ABSTRACT

Delineating the gene-regulatory programs underlying complex cell types is fundamental for understanding brain function in health and disease. Here, we comprehensively examined human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in 517 thousand cells (399 thousand neurons and 118 thousand non-neurons) from 46 regions of three adult male brains. We identified 188 cell types and characterized their molecular signatures. Integrative analyses revealed concordant changes in DNA methylation, chromatin accessibility, chromatin organization, and gene expression across cell types, cortical areas, and basal ganglia structures. We further developed single-cell methylation barcodes that reliably predict brain cell types using the methylation status of select genomic sites. This multimodal epigenomic brain cell atlas provides new insights into the complexity of cell-type-specific gene regulation in adult human brains.


Subject(s)
Brain , DNA Methylation , Epigenesis, Genetic , Adult , Humans , Male , Brain/cytology , Brain/metabolism , Chromatin/metabolism , Genome, Human , Single-Cell Analysis , Imaging, Three-Dimensional , Atlases as Topic
SELECTION OF CITATIONS
SEARCH DETAIL