Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Elife ; 132024 May 15.
Article En | MEDLINE | ID: mdl-38747717

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Double-Stranded , Ribonuclease III , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/chemistry , Ribonuclease III/genetics , Cryoelectron Microscopy , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/chemistry
2.
bioRxiv ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38260544

Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA production and consumption are highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking. In this work, we engineer an acetyl-CoA biosensor from the bacterial protein PanZ and circularly permuted green fluorescent protein (cpGFP). We biochemically characterize the sensor and demonstrate its selectivity for acetyl-CoA over other CoA species. We then deploy the biosensor in E. coli and HeLa cells to demonstrate its utility in living cells. In E. coli, we show that the biosensor enables detection of rapid changes in acetyl-CoA levels. In human cells, we show that the biosensor enables subcellular detection and reveals the compartmentalization of acetyl-CoA metabolism.

3.
Cell Rep ; 43(2): 113694, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38265937

N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors have essential roles in neurotransmission and synaptic plasticity. Previously, we identified an evolutionarily conserved protein, NRAP-1, that is required for NMDA receptor (NMDAR) function in C. elegans. Here, we demonstrate that NRAP-1 was sufficient to gate NMDARs and greatly enhanced glutamate-mediated NMDAR gating, thus conferring coincident activation properties to the NMDAR. Intriguingly, vertebrate NMDARs-and chimeric NMDARs where the amino-terminal domain (ATD) of C. elegans NMDARs was replaced by the ATD from vertebrate receptors-were spontaneously active when ectopically expressed in C. elegans neurons. Thus, the ATD is a primary determinant of NRAP-1- and glutamate-mediated gating of NMDARs. We determined the crystal structure of NRAP-1 at 1.9-Å resolution, which revealed two distinct domains positioned around a central low-density lipoprotein receptor class A domain. The NRAP-1 structure, combined with chimeric and mutational analyses, suggests a model where the three NRAP-1 domains work cooperatively to modify the gating of NMDARs.


Caenorhabditis elegans , Receptors, N-Methyl-D-Aspartate , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Caenorhabditis elegans/metabolism , N-Methylaspartate , Synaptic Transmission , Glutamic Acid
4.
bioRxiv ; 2024 Jan 24.
Article En | MEDLINE | ID: mdl-37790392

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, C. elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.

5.
Nat Commun ; 13(1): 3716, 2022 07 01.
Article En | MEDLINE | ID: mdl-35778399

The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.


COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Luciferases , Membrane Glycoproteins/metabolism , Neutralization Tests , Pandemics , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
6.
Biomolecules ; 11(12)2021 12 09.
Article En | MEDLINE | ID: mdl-34944496

Csa3 family transcription factors are ancillary CRISPR-associated proteins composed of N-terminal CARF domains and C-terminal winged helix-turn-helix domains. The activity of Csa3 transcription factors is thought to be controlled by cyclic oligoadenyate (cOA) second messengers produced by type III CRISPR-Cas surveillance complexes. Here we show that Saccharolobus solfataricus Csa3a recognizes cyclic tetra-adenylate (cA4) and that Csa3a lacks self-regulating "ring nuclease" activity present in some other CARF domain proteins. The crystal structure of the Csa3a/cA4 complex was also determined and the structural and thermodynamic basis for cA4 recognition are described, as are conformational changes in Csa3a associated with cA4 binding. We also characterized the effect of cA4 on recognition of putative DNA binding sites. Csa3a binds to putative promoter sequences in a nonspecific, cooperative and cA4-independent manner, suggesting a more complex mode of transcriptional regulation. We conclude the Csa3a/cA4 interaction represents a nexus between the type I and type III CRISPR-Cas systems present in S. solfataricus, and discuss the role of the Csa3/cA4 interaction in coordinating different arms of this integrated class 1 immune system to mount a synergistic, highly orchestrated immune response.


Sulfolobus solfataricus/immunology , Transcription Factors/metabolism , Adenosine Monophosphate/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Binding Sites , CRISPR-Cas Systems , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Protein Domains , Transcription Factors/chemistry
7.
Elife ; 92020 08 11.
Article En | MEDLINE | ID: mdl-32780017

Yeast Sfh5 is an unusual member of the Sec14-like phosphatidylinositol transfer protein (PITP) family. Whereas PITPs are defined by their abilities to transfer phosphatidylinositol between membranes in vitro, and to stimulate phosphoinositide signaling in vivo, Sfh5 does not exhibit these activities. Rather, Sfh5 is a redox-active penta-coordinate high spin FeIII hemoprotein with an unusual heme-binding arrangement that involves a co-axial tyrosine/histidine coordination strategy and a complex electronic structure connecting the open shell iron d-orbitals with three aromatic ring systems. That Sfh5 is not a PITP is supported by demonstrations that heme is not a readily exchangeable ligand, and that phosphatidylinositol-exchange activity is resuscitated in heme binding-deficient Sfh5 mutants. The collective data identify Sfh5 as the prototype of a new class of fungal hemoproteins, and emphasize the versatility of the Sec14-fold as scaffold for translating the binding of chemically distinct ligands to the control of diverse sets of cellular activities.


Heme-Binding Proteins/chemistry , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Carrier Proteins/chemistry , Carrier Proteins/genetics , Heme-Binding Proteins/genetics , Phospholipid Transfer Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
8.
Org Biomol Chem ; 17(48): 10237-10244, 2019 12 28.
Article En | MEDLINE | ID: mdl-31793605

The application of solid-phase peptide synthesis and native chemical ligation in chemical protein synthesis (CPS) has enabled access to synthetic proteins that cannot be produced recombinantly, such as site-specific post-translationally modified or mirror-image proteins (D-proteins). However, CPS is commonly hampered by aggregation and insolubility of peptide segments and assembly intermediates. Installation of a solubilizing tag consisting of basic Lys or Arg amino acids can overcome these issues. Through the introduction of a traceless cleavable linker, the solubilizing tag can be selectively removed to generate native peptide. Here we describe the synthesis of a next-generation amine-reactive linker N-Fmoc-2-(7-amino-1-hydroxyheptylidene)-5,5-dimethylcyclohexane-1,3-dione (Fmoc-Ddap-OH) that can be used to selectively introduce semi-permanent solubilizing tags ("helping hands") onto Lys side chains of difficult peptides. This linker has improved stability compared to its predecessor, a property that can increase yields for multi-step syntheses with longer handling times. We also introduce a new linker cleavage protocol using hydroxylamine that greatly accelerates removal of the linker. The utility of this linker in CPS was demonstrated by the preparation of the synthetically challenging Shiga toxin subunit B (StxB) protein. This robust and easy-to-use linker is a valuable addition to the CPS toolbox for the production of challenging synthetic proteins.


Peptides/chemistry , Protein Subunits/chemical synthesis , Shiga Toxin/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Amino Acid Sequence , Arginine/chemistry , Cyclohexanones/chemistry , Hydroxylamine/chemistry , Lysine/chemistry , Solubility
9.
Retrovirology ; 16(1): 28, 2019 10 22.
Article En | MEDLINE | ID: mdl-31640718

BACKGROUND: PIE12-trimer is a highly potent D-peptide HIV-1 entry inhibitor that broadly targets group M isolates. It specifically binds the three identical conserved hydrophobic pockets at the base of the gp41 N-trimer with sub-femtomolar affinity. This extremely high affinity for the transiently exposed gp41 trimer provides a reserve of binding energy (resistance capacitor) to prevent the viral resistance pathway of stepwise accumulation of modest affinity-disrupting mutations. Such modest mutations would not affect PIE12-trimer potency and therefore not confer a selective advantage. Viral passaging in the presence of escalating PIE12-trimer concentrations ultimately selected for PIE12-trimer resistant populations, but required an extremely extended timeframe (> 1 year) in comparison to other entry inhibitors. Eventually, HIV developed resistance to PIE12-trimer by mutating Q577 in the gp41 pocket. RESULTS: Using deep sequence analysis, we identified three mutations at Q577 (R, N and K) in our two PIE12-trimer resistant pools. Each point mutant is capable of conferring the majority of PIE12-trimer resistance seen in the polyclonal pools. Surface plasmon resonance studies demonstrated substantial affinity loss between PIE12-trimer and the Q577R-mutated gp41 pocket. A high-resolution X-ray crystal structure of PIE12 bound to the Q577R pocket revealed the loss of two hydrogen bonds, the repositioning of neighboring residues, and a small decrease in buried surface area. The Q577 mutations in an NL4-3 backbone decreased viral growth rates. Fitness was ultimately rescued in resistant viral pools by a suite of compensatory mutations in gp120 and gp41, of which we identified seven candidates from our sequencing data. CONCLUSIONS: These data show that PIE12-trimer exhibits a high barrier to resistance, as extended passaging was required to develop resistant virus with normal growth rates. The primary resistance mutation, Q577R/N/K, found in the conserved gp41 pocket, substantially decreases inhibitor affinity but also damages viral fitness, and candidate compensatory mutations in gp160 have been identified.


Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics , HIV-1/drug effects , Peptides/pharmacology , Virus Internalization/drug effects , Cell Line , HIV Infections/virology , HIV-1/genetics , Humans , Mutation
10.
RNA ; 25(9): 1192-1201, 2019 09.
Article En | MEDLINE | ID: mdl-31239298

Protein kinase RNA-activated (PKR) is an interferon-inducible kinase that is potently activated by long double-stranded RNA (dsRNA). In a previous study, we found that snoRNAs exhibit increased association with PKR in response to metabolic stress. While it was unclear if snoRNAs also activated PKR in cells, activation in vitro was observed. snoRNAs do not exhibit the double-stranded character typically required for activation of PKR, but some studies suggest such RNAs can activate PKR if triphosphorylated at the 5' terminus, or if they are able to form intermolecular dimers. To interrogate the mechanism of PKR activation by snoRNAs in vitro we focused on SNORD113. Using multiple methods for defining the 5'-phosphorylation state, we find that activation of PKR by SNORD113 does not require a 5'-triphosphate. Gel purification from a native gel followed by analysis using analytical ultracentrifugation showed that dimerization was also not responsible for activation. We isolated distinct conformers of SNORD113 from a native polyacrylamide gel and tracked the activating species to dsRNA formed from antisense RNA synthesized during in vitro transcription with T7 RNA polymerase. Similar studies with additional snoRNAs and small RNAs showed the generality of our results. Our studies suggest that a 5' triphosphate is not an activating ligand for PKR, and emphasize the insidious nature of antisense contamination.


Enzyme Activation/genetics , Polyphosphates/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , DNA-Directed RNA Polymerases/metabolism , Dimerization , Humans , Ligands , Phosphorylation/genetics , Protein Binding/genetics , RNA, Double-Stranded/genetics , RNA, Small Nucleolar/genetics , Transcription, Genetic/genetics , Ultracentrifugation/methods , Viral Proteins/metabolism
11.
Mol Pharm ; 15(3): 1169-1179, 2018 03 05.
Article En | MEDLINE | ID: mdl-29436835

Peptides often suffer from short in vivo half-lives due to proteolysis and renal clearance that limit their therapeutic potential in many indications, necessitating pharmacokinetic (PK) enhancement. d-Peptides, composed of mirror-image d-amino acids, overcome proteolytic degradation but are still vulnerable to renal filtration due to their small size. If renal filtration could be slowed, d-peptides would be promising therapeutic agents for infrequent dosing, such as in extended-release depots. Here, we tether a diverse set of PK-enhancing cargoes to our potent, protease-resistant d-peptide HIV entry inhibitor, PIE12-trimer. This inhibitor panel provides an opportunity to evaluate the PK impact of the cargoes independently of proteolysis. While all the PK-enhancing strategies (PEGylation, acylation, alkylation, and cholesterol conjugation) improved in vivo half-life, cholesterol conjugation of PIE12-trimer dramatically improves both antiviral potency and half-life in rats, making it our lead anti-HIV drug candidate. We designed its chemical synthesis for large-scale production (CPT31) and demonstrated that the PK profile in cynomolgous monkeys supports future development of monthly or less frequent depot dosing in humans. CPT31 could address an urgent need in both HIV prevention and treatment.


HIV Fusion Inhibitors/pharmacokinetics , HIV Infections/drug therapy , HIV-1/drug effects , Peptide Fragments/pharmacokinetics , Animals , Cholesterol/chemistry , Delayed-Action Preparations , Drug Carriers/chemistry , Drug Design , Drug Evaluation, Preclinical , HIV Fusion Inhibitors/administration & dosage , HIV Fusion Inhibitors/chemical synthesis , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Half-Life , Macaca fascicularis , Male , Models, Animal , Peptide Fragments/administration & dosage , Peptide Fragments/chemical synthesis , Rats , Rats, Sprague-Dawley , Stereoisomerism
12.
Proc Natl Acad Sci U S A ; 114(38): E7939-E7948, 2017 09 19.
Article En | MEDLINE | ID: mdl-28874570

Loquacious-PD (Loqs-PD) is required for biogenesis of many endogenous siRNAs in Drosophila In vitro, Loqs-PD enhances the rate of dsRNA cleavage by Dicer-2 and also enables processing of substrates normally refractory to cleavage. Using purified components, and Loqs-PD truncations, we provide a mechanistic basis for Loqs-PD functions. Our studies indicate that the 22 amino acids at the C terminus of Loqs-PD, including an FDF-like motif, directly interact with the Hel2 subdomain of Dicer-2's helicase domain. This interaction is RNA-independent, but we find that modulation of Dicer-2 cleavage also requires dsRNA binding by Loqs-PD. Furthermore, while the first dsRNA-binding motif of Loqs-PD is dispensable for enhancing cleavage of optimal substrates, it is essential for enhancing cleavage of suboptimal substrates. Finally, our studies define a previously unrecognized Dicer interaction interface and suggest that Loqs-PD is well positioned to recruit substrates into the helicase domain of Dicer-2.


Drosophila Proteins/chemistry , RNA Helicases/chemistry , RNA, Double-Stranded/chemistry , RNA-Binding Proteins/chemistry , Ribonuclease III/chemistry , Amino Acid Motifs , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Protein Domains , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism
13.
Biochemistry ; 55(30): 4229-38, 2016 08 02.
Article En | MEDLINE | ID: mdl-27379573

Type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the isoprenoid biosynthetic pathway. The enzyme from Streptomyces pneumoniae (spIDI-2) is a homotetramer in solution with behavior, including a substantial increase in the rate of FMN reduction by NADPH in the presence of IPP, suggesting that substrate binding at one subunit alters the kinetic and binding properties of another. We now report the construction of catalytically active monomeric spIDI-2. The monomeric enzyme contains a single-point mutation (N37A) and a six-residue C-terminal deletion that preserves the secondary structure of the subunits in the wild-type (wt) homotetramer. UV-vis spectra of the enzyme-bound flavin mononucleotide (FMN) cofactor in FMNox, FMNred, and FMNred·IPP/DMAPP states are the same for monomeric and wt homotetrameric spIDI-2. The mutations in monomeric IDI-2 lower the melting temperature of the protein by 20 °C and reduce the binding affinities of FMN and IDI by 40-fold but have a minimal effect on kcat. Stopped-flow kinetic studies of monomeric spIDI-2 showed that the rate of reduction of FMN by NADH (k = 1.64 × 10(-3) s(-1)) is substantially faster when IPP is added to the monomeric enzyme (k = 0.57 s(-1)), similar to behavior seen for wt-spIDI-2. Our results indicate that cooperative interactions among subunits in the wt homotetramer are not responsible for the increased rate of reduction of spIDI-2·FMN by NADH, and two possible scenarios for the enhancement are suggested.


Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carbon-Carbon Double Bond Isomerases/chemistry , Carbon-Carbon Double Bond Isomerases/metabolism , Bacterial Proteins/genetics , Carbon-Carbon Double Bond Isomerases/genetics , Hemiterpenes , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Engineering , Protein Structure, Quaternary , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/genetics , Streptomyces/enzymology , Streptomyces/genetics
14.
PLoS One ; 10(5): e0126420, 2015.
Article En | MEDLINE | ID: mdl-25997164

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.


Ultracentrifugation/methods , Ultracentrifugation/standards , Calibration , Reproducibility of Results
15.
Protein Sci ; 24(4): 446-63, 2015 Apr.
Article En | MEDLINE | ID: mdl-25287718

Ebolaviruses are highly lethal filoviruses that cause hemorrhagic fever in humans and nonhuman primates. With no approved treatments or preventatives, the development of an anti-ebolavirus therapy to protect against natural infections and potential weaponization is an urgent global health need. Here, we describe the design, biophysical characterization, and validation of peptide mimics of the ebolavirus N-trimer, a highly conserved region of the GP2 fusion protein, to be used as targets to develop broad-spectrum inhibitors of ebolavirus entry. The N-trimer region of GP2 is 90% identical across all ebolavirus species and forms a critical part of the prehairpin intermediate that is exposed during viral entry. Specifically, we fused designed coiled coils to the N-trimer to present it as a soluble trimeric coiled coil as it appears during membrane fusion. Circular dichroism, sedimentation equilibrium, and X-ray crystallography analyses reveal the helical, trimeric structure of the designed N-trimer mimic targets. Surface plasmon resonance studies validate that the N-trimer mimic binds its native ligand, the C-peptide region of GP2. The longest N-trimer mimic also inhibits virus entry, thereby confirming binding of the C-peptide region during viral entry and the presence of a vulnerable prehairpin intermediate. Using phage display as a model system, we validate the suitability of the N-trimer mimics as drug screening targets. Finally, we describe the foundational work to use the N-trimer mimics as targets in mirror-image phage display, which will be used to identify D-peptide inhibitors of ebolavirus entry.


Ebolavirus/chemistry , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Amino Acid Sequence , Drug Delivery Systems , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Viral Envelope Proteins/genetics
16.
Mol Biol Cell ; 25(5): 712-27, 2014 Mar.
Article En | MEDLINE | ID: mdl-24403601

Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.


Lipid Metabolism , Phospholipid Transfer Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , Homeostasis , Intracellular Membranes/metabolism , Models, Molecular , Phospholipases/metabolism , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Spores, Fungal/metabolism
17.
J Mol Biol ; 426(3): 510-25, 2014 Feb 06.
Article En | MEDLINE | ID: mdl-24161953

The cellular ESCRT (endosomal sorting complexes required for transport) pathway drives membrane constriction toward the cytosol and effects membrane fission during cytokinesis, endosomal sorting, and the release of many enveloped viruses, including the human immunodeficiency virus. A component of this pathway, the AAA ATPase Vps4, provides energy for pathway progression. Although it is established that Vps4 functions as an oligomer, subunit stoichiometry and other fundamental features of the functional enzyme are unclear. Here, we report that although some mutant Vps4 proteins form dodecameric assemblies, active wild-type Saccharomyces cerevisiae and Sulfolobus solfataricus Vps4 enzymes can form hexamers in the presence of ATP and ADP, as assayed by size-exclusion chromatography and equilibrium analytical ultracentrifugation. The Vta1p activator binds hexameric yeast Vps4p without changing the oligomeric state of Vps4p, implying that the active Vta1p-Vps4p complex also contains a single hexameric ring. Additionally, we report crystal structures of two different archaeal Vps4 homologs, whose structures and lattice interactions suggest a conserved mode of oligomerization. Disruption of the proposed hexamerization interface by mutagenesis abolished the ATPase activity of archaeal Vps4 proteins and blocked Vps4p function in S. cerevisiae. These data challenge the prevailing model that active Vps4 is a double-ring dodecamer, and argue that, like other type I AAA ATPases, Vps4 functions as a single ring with six subunits.


Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Adenosine Triphosphatases/chemistry , Crystallography, X-Ray , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Models, Molecular , Protein Conformation , Protein Multimerization , Saccharomyces cerevisiae Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 110(15): E1342-51, 2013 Apr 09.
Article En | MEDLINE | ID: mdl-23530241

Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity.


Dynamin I/chemistry , Dynamins/chemistry , Mitochondria/metabolism , Mitochondrial Dynamics , Saccharomyces cerevisiae/metabolism , Cell Division , GTP Phosphohydrolases/chemistry , Green Fluorescent Proteins/chemistry , Guanosine Triphosphate/chemistry , Humans , Hydrolysis , Membrane Proteins/chemistry , Mitochondrial Proteins/chemistry , Mitophagy , Polymers/chemistry , Protein Conformation , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae Proteins/chemistry
19.
Retrovirology ; 10: 4, 2013 Jan 10.
Article En | MEDLINE | ID: mdl-23305456

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a "stiffness switch", a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein. RESULTS: In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus. CONCLUSIONS: This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy.


HIV-1/pathogenicity , Virion/pathogenicity , Virus Internalization , Humans , Microscopy, Atomic Force , Models, Biological , Viral Matrix Proteins/physiology , Virion/chemistry , Virus Replication/physiology , env Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/physiology
20.
J Biol Chem ; 287(44): 37371-82, 2012 Oct 26.
Article En | MEDLINE | ID: mdl-22930756

The 20S proteasome is an essential, 28-subunit protease that sequesters proteolytic sites within a central chamber, thereby repressing substrate degradation until proteasome activators open the entrance/exit gate. Two established activators, Blm10 and PAN/19S, induce gate opening by binding to the pockets between proteasome α-subunits using C-terminal HbYX (hydrophobic-tyrosine-any residue) motifs. Equivalent HbYX motifs have been identified in Pba1 and Pba2, which function in proteasome assembly. Here, we demonstrate that Pba1-Pba2 proteins form a stable heterodimer that utilizes its HbYX motifs to bind mature 20S proteasomes in vitro and that the Pba1-Pba2 HbYX motifs are important for a physiological function of proteasomes, the maintenance of mitochondrial function. Other factors that contribute to proteasome assembly or function also act in the maintenance of mitochondrial function and display complex genetic interactions with one another, possibly revealing an unexpected pathway of mitochondrial regulation involving the Pba1-Pba2 proteasome interaction. Our determination of a proteasome Pba1-Pba2 crystal structure reveals a Pba1 HbYX interaction that is superimposable with those of known activators, a Pba2 HbYX interaction that is different from those reported previously, and a gate structure that is disrupted but not sufficiently open to allow entry of even small peptides. These findings extend understanding of proteasome interactions with HbYX motifs and suggest multiple roles for Pba1-Pba2 interactions throughout proteasome assembly and function.


Proteasome Endopeptidase Complex/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Amino Acid Sequence , Crystallography, X-Ray , Hydrogen Bonding , Immobilized Proteins/chemistry , Leupeptins/chemistry , Mitochondria/metabolism , Mitochondria/physiology , Models, Molecular , Molecular Sequence Data , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/metabolism
...