Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(3): e24794, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333871

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers causing the highest mortality rate worldwide. Treatment options of surgery, radiation, cytotoxic drugs and liver transplantation suffer significant side effects and a high frequency of relapse. Stem cell therapy has been proposed as a new effective therapy, however, controversial reports are emerging on the role of mesenchymal stem cells in cancer. In this work, we aimed to assess the regenerative capacities of adipose mesenchymal stem cells when exposed to serum from HCC patients, by assessing the effect of the sera on modulating the regenerative capacities of h-AMSCs and the cancer properties in HCC cells. This will pave the way for maximizing the efficacy of MSCs in cancer therapy. Our data show that HCC serum-treated hA-MSCs suffered oncogene-induced senescence as shown by their altered morphology and ameliorated proliferation and differentiation. The cells were enlarged with small irregular nuclei, swollen rough endoplasmic reticulum cisternae, and aging lysosomes typified by dark residual bodies. HCC serum-treated Huh-7 cancer cells on the other hand displayed higher tumor aggressiveness as depicted by altered morphology, increased cellular proliferation and migration, and decreased percentage of early and late apoptotic cells. Our findings provide evidence that exposure of hA-MSCs to the serum of HCC patients decreases their regenerative capacities and should be considered when employed as a potential therapy in HCC patients.

2.
Pflugers Arch ; 474(10): 1043-1051, 2022 10.
Article in English | MEDLINE | ID: mdl-35780250

ABSTRACT

Mitochondrial temperature is produced by various metabolic processes inside the mitochondria, particularly oxidative phosphorylation. It was recently reported that mitochondria could normally operate at high temperatures that can reach 50℃. The aim of this review is to identify mitochondrial temperature differences between normal cells and cancer cells. Herein, we discussed the different types of mitochondrial thermosensors and their advantages and disadvantages. We reviewed the studies assessing the mitochondrial temperature in cancer cells and normal cells. We shed the light on the factors involved in maintaining the mitochondrial temperature of normal cells compared to cancer cells.


Subject(s)
Mitochondria , Mitochondrial Proteins , Hot Temperature , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , Temperature
3.
PLoS One ; 15(5): e0232759, 2020.
Article in English | MEDLINE | ID: mdl-32453737

ABSTRACT

SUMMARY: Reprogramming autologous adult cells to pluripotent cells allows for relatively safe cell replacement therapy. This can be achieved by nuclear transfer, cell fusion, or induced pluripotent stem cell technology However, the epigenetic memory of the cell is considered as a great challenge facing the complete reprograming of cells by these methods. Introducing oocyte-specific factors into differentiated cells may present a promising approach by mimicking cellular reprogramming during fertilization. METHODS: Human bone marrow mesenchymal stromal cells (hBM-MSCs) were cultured with different concentrations of human metaphase II (M II) oocyte extract (0.1, 1, 5, 10, 30 ng/µl). Reprogramming was assessed at various exposure times (1, 4, 7 days). Cells were tested for their proliferation rate, morphological changes, expression of pluripotency markers, expression of mesenchymal to epithelial transition markers, and mitochondrial rejuvenation. (mitochondrial localization, morphological changes, bioenergetics, transmembrane potential, and levels of reactive oxygen species, ROS). RESULTS: Treatment of human BM-MSCs with 10 ng/µl oocyte extract resulted in increased cell proliferation, which was associated with the upregulation of the pluripotency genes OCT-4, NANOG, and SOX-2 and a concomitant downregulation of mesenchymal-specific genes. MSCs exhibited small, immature round mitochondria with few swollen cristae localized proximal to the cell nucleus. This was accompanied by morphological cell changes, a metabolic shift towards oxidative phosphorylation, a high mitochondrial membrane potential, and increased ROS production. CONCLUSION: These data show that treatment with 10 ng/µl human MII-phase oocyte extract induced genetic and mitochondrial reprogramming of human BM-MSCs to a more embryonic phenotype.


Subject(s)
Cell Extracts/pharmacology , Cellular Reprogramming/genetics , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Oocytes/metabolism , Biomarkers/metabolism , Cell Proliferation/drug effects , Cell Shape/drug effects , Cells, Cultured , Cellular Reprogramming/drug effects , Energy Metabolism/drug effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation/drug effects , Humans , Membrane Potentials/drug effects , Mesenchymal Stem Cells/drug effects , Mitochondria/drug effects , Mitochondria/ultrastructure , Oocytes/drug effects , Oxygen Consumption/drug effects , Time Factors
4.
Adv Exp Med Biol ; 1247: 109-123, 2020.
Article in English | MEDLINE | ID: mdl-31802446

ABSTRACT

Female aging is one of the most important factors that impacts human reproduction. With aging, there is a natural decline in female fertility. The decrease in fertility is slow and steady in women aged 30-35 years; however, this decline is accelerated after the age of 35 due to decreases in the ovarian reserve and oocyte quality. Human oocyte aging is affected by different environmental factors, such as dietary habits and lifestyle. The ovarian microenvironment contributes to oocyte aging and longevity. The immediate oocyte microenvironment consists of the surrounding cells. Crosstalk between the oocyte and microenvironment is mediated by direct contact with surrounding cells, the extracellular matrix, and signalling molecules, including hormones, growth factors, and metabolic products. In this review, we highlight the different microenvironmental factors that accelerate human oocyte aging and decrease oocyte function. The ovarian microenvironment and the stress that is induced by environmental pollutants and a poor diet, along with other factors, impact oocyte quality and function and contribute to accelerated oocyte aging and diseases of infertility.


Subject(s)
Cellular Senescence/physiology , Environment , Fertility/physiology , Oocytes/cytology , Animals , Female , Humans , Infertility, Female/pathology , Infertility, Female/physiopathology , Oocytes/pathology , Ovary/physiology
5.
Mech Ageing Dev ; 175: 88-99, 2018 10.
Article in English | MEDLINE | ID: mdl-29890177

ABSTRACT

Cellular reprograming paves the way for creating functional patient-specific tissues to eliminate immune rejection responses by applying the same genetic profile. However, the epigenetic memory of a cell remains a challenge facing the current reprograming methods and does not allow transcription factors to bind properly. Because somatic cells can be reprogramed by transferring their nuclear contents into oocytes, introducing specific oocyte factors into differentiated cells is considered a promising approach for mimicking the reprograming process that occurs during fertilization. Mammalian metaphase II oocyte possesses a superior capacity to epigenetically reprogram somatic cell nuclei towards an embryonic stem cell-like state than the current factor-based reprograming approaches. This may be due to the presence of specific factors that are lacking in the current factor-based reprograming approaches. In this review, we focus on studies identifying human oocyte-enriched factors aiming to understand the molecular mechanisms mediating cellular reprograming. We describe the role of oocyte-enriched factors in metabolic switch, chromatin remodelling, and global epigenetic transformation. This is critical for improving the quality of resulting reprogramed cells, which is crucial for therapeutic applications.


Subject(s)
Cellular Reprogramming Techniques , Cellular Reprogramming , Oocytes/metabolism , Stem Cells/metabolism , Animals , Chromatin Assembly and Disassembly , Energy Metabolism , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Humans
6.
J Cell Biochem ; 119(5): 3892-3902, 2018 05.
Article in English | MEDLINE | ID: mdl-29143969

ABSTRACT

Despite advances in therapy of breast and ovarian cancers, they still remain among the most imperative causes of cancer death in women. The first can be considered one of the most widespread diseases among females, while the latter is more lethal and needs prompt treatment. Thus, the research field can still benefit from discovery of new compounds that can be of potential use in management of these grave illnesses. We hereby aimed to assess the antitumor activity of the phytosterol α-spinasterol isolated from Ganoderma resinaceum mushroom on human breast cancer cell lines (MCF-7, MDA-MB-231), as well as, on human ovarian cancer cell line (SKOV-3). The anti-tumor activity of α-spinasterol, isolated from the mycelial extract of the Egyptian G. resinaceum, on human breast and ovarian cancer cell lines was evaluated by MTT cell viability assay and AnnexinV/propidium iodide apoptosis assay. The molecular mechanism underlying this effect was assessed by the relative expression of the following markers; tumor suppressor (p53, BRCA1, BRCA2), apoptotic marker (Bax) and cell cycle progression markers (cyclin dependent kinases cdk4/6) using real-time PCR. Cell cycle analysis was performed for the three investigated cancer cell lines to explore the effect on cell cycle progression. Our findings showed that α-spinasterol exhibited a higher antitumor activity on MCF-7 cells relative to SKOV-3 cells, while its lowest antitumor activity was against MDA-MB-231 cells. A significant increase in the expression of p53 and Bax was observed in cells treated with α-spinasterol, while cdk4/6 were significantly down-regulated upon exposure to α-spinasterol. Cell cycle analysis of α-spinasterol treated cells showed a G0 -G1 arrest. In conclusion, α-spinasterol isolated from G. resinaceum mushroom exerts a potent inhibitory activity on breast and ovarian cancer cell lines in a time- and dose-dependent manner. This can be reasonified in lights of the compound's ability to increase p53 and Bax expressions, and to lower the expression of cdk4/6.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms , Ganoderma/classification , Gene Expression Regulation, Neoplastic/drug effects , Ovarian Neoplasms , Stigmasterol/analogs & derivatives , Tumor Suppressor Protein p53/biosynthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Stigmasterol/chemistry , Stigmasterol/pharmacology
7.
Lasers Med Sci ; 32(7): 1637-1646, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28681086

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide. Although cardiac transplantation is considered the most effective therapy for end-stage cardiac diseases, it is limited by the availability of matching donors and the complications of the immune suppressive regimen used to prevent graft rejection. Application of stem cell therapy in experimental animal models was shown to reverse cardiac remodeling, attenuate cardiac fibrosis, improve heart functions, and stimulate angiogenesis. The efficacy of stem cell therapy can be amplified by low-level laser radiation. It is well established that the bio-stimulatory effect of low-level laser is influenced by the following parameters: wavelength, power density, duration, energy density, delivery time, and the type of irradiated target. In this review, we evaluate the available experimental data on treatment of myocardial infarction using low-level laser. Eligible papers were characterized as in vivo experimental studies that evaluated the use of low-level laser therapy on stem cells in order to attenuate myocardial infarction. The following descriptors were used separately and in combination: laser therapy, low-level laser, low-power laser, stem cell, and myocardial infarction. The assessed low-level laser parameters were wavelength (635-804 nm), power density (6-50 mW/cm2), duration (20-150 s), energy density (0.96-1 J/cm2), delivery time (20 min-3 weeks after myocardial infarction), and the type of irradiated target (bone marrow or in vitro-cultured bone marrow mesenchymal stem cells). The analysis focused on the cardioprotective effect of this form of therapy, the attenuation of scar tissue, and the enhancement of angiogenesis as primary targets. Other effects such as cell survival, cell differentiation, and homing are also included. Among the evaluated protocols using different parameters, the best outcome for treating myocardial infarction was achieved by treating the bone marrow by one dose of low-level laser with 804 nm wavelength and 1 J/cm2 energy density within 4 h of the infarction. This approach increased stem cell survival, proliferation, and homing. It has also decreased the infarct size and cell apoptosis, leading to enhanced heart functions. These effects were stable for 6 weeks. However, more studies are still required to assess the effects of low-level laser on the genetic makeup of the cell, the nuclei, and the mitochondria of mesenchymal stromal cells (MSCs).


Subject(s)
Low-Level Light Therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/radiation effects , Myocardial Infarction/radiotherapy , Animals , Mesenchymal Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL